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Diffusion of particles bouncing on a one-dimensional periodically corrugated floor
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We report on a class of spatially extended mechanical systems sustaining a transport process of diffusive
type. These systems consist of a point particle subject to a constant vertical acceleration and bouncing on a
one-dimensional periodically corrugated floor. We show that the deterministic dynamics of these systems is
chaotic with small elliptic islands for many parameter values. The motion of particles perturbed by a small
noise has a horizontal diffusion that is normal. In such a case, we show that the diffusion coefficient oscillates
periodically as the energy of particles increases. In the absence of noise, there still exists an effective numerical
value for the diffusion coefficient and this value has an irregular dependence on energy.
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I. INTRODUCTION

In recent years, dynamical chaos has been at the cent
the preoccupations in our understanding of transport pro
ties in nonequilibrium statistical mechanics. The compatib
ity of the phenomenological time-irreversible diffusion equ
tion with those of time-reversible Hamiltonian dynamics th
shows hyperbolicity has been much discussed. Bunimov
and Sinai have proved that the motion of a particle in
periodic Lorentz gas with a finite horizon follows a Brow
ian motion in a certain scaling limit@1#. Gaspard and Nicolis
have derived an escape-rate formula that connects the d
sion coefficients with the chaotic dynamical properties@2#.
Morever, the Pollicott-Ruelle resonances were proved to
proach to the eigenvalues of the phenomenological diffus
equation in the case of the multibaker mapping@3#. More
recently, the hydrodynamic modes of diffusion associa
with these Pollicott-Ruelle resonances have been show
display a fractal structure in the cases of the multibaker m
ping and two hyperbolic Lorentz gases@4,5#. Besides, the
transport coefficients and the reaction rates can have a
regular fractal-like dependence on the control parameter
the system. This result has been established by Klages
Dorfman for the case of one-dimensional piecewise-lin
mappings@6–9#. These works show that the determinis
chaotic dynamics induces irregular fractal-like structures t
were previously unexpected among the transport proper

Transport by diffusion has also been studied in nonhyp
bolic chaotic dynamical systems. Systems that are area
serving are known to present complicated phase portr
with regular motion in the form of elliptic islands coexistin
with chaotic one. A famous example is the standard map
has been studied as a paradigm of diffusive transpor
Hamiltonian systems with two degrees of freedom. Th
studies have shown that elliptic islands generate anoma
diffusion with long-time tail effects, preventing the existen
of a positive and finite diffusion coefficient. Therefore,
normal diffusion cannot be expected in the presence of e
tic islands.

However, small elliptic islands corresponding to regu
motions can be easily destroyed by small noises. In this w
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of
r-
-
-
t
h

e

fu-

p-
n

d
to

p-

ir-
of
nd
r

t
s.
r-
re-
its

at
in
e
us

-

r
y,

Rechester and White have shown that a system, such a
standard map, which is not fully chaotic can have norm
diffusions when perturbed by small noises@10#. The resulting
diffusion coefficient is largely independent of the amplitu
of a weak noise so that the diffusion is essentially induced
the chaotic dynamics of the system without noise. Moreov
Rechester and White have shown that the effective diffus
coefficient of the standard map presents an oscillatory dep
dence on the system@10#. It turns out that an effective diffu-
sion coefficient can still be numerically obtained for ma
parameter values in nonhyperbolic chaotic systems.

On the other hand, our investigations will show that, ev
if the parameter values where elliptic islands exist could
dense, the measure of the parameter values for which
elliptic island exists may still be positive in our system
Accordingly, we may wonder if the transport properties
nonhyperbolic systems could not be reminiscent in many
spects to the ones in hyperbolic systems.

The purpose of this article is to investigate this proble
by considering diffusive transport in mechanical syste
such as billiards in an external field. The systems we c
sider are composed of a particle flying in a vertical const
electric or gravitational field and bouncing elastically on
periodically corrugated wall that extends horizontally.

The class of billiard systems we introduce here diffe
from conventional billiards on the plane, especially, in th
the dynamical properties have a nontrivial dependence
energy. In particular, we show that the diffusion coefficie
has an oscillatory dependence on energy, which is remi
cent of the behavior observed in the standard map by
chester and White.

Besides, we show that these systems are not fully cha
because there exist many parameter values for which v
small elliptic islands corresponding to regular motion coex
in the phase space with chaotic motion. However, these v
small elliptic islands are easily destroyed by a weak noise
this case, the chaotic motion and the weak noise induce
normal diffusion of the particles. This diffusion is normal
the sense that the horizontal displacement of the particle
asymptotically a Gaussian distribution at long times. Mo
©2001 The American Physical Society15-1
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TAKAHISA HARAYAMA AND PIERRE GASPARD PHYSICAL REVIEW E 64 036215
over, we observe that the diffusion coefficient in presence
a weak noise has a value that is very close to the effec
diffusion coefficient computed numerically in absence
noise. Switching off the noise reveals an irregular—b
reproducible—dependence of the effective diffusion coe
cient on the energy. This phenomenon has similarities w
the fractal-like behavior of the diffusion coefficient, as r
ported for one-dimensional mappings by Klages and Do
man @6#.

This paper is composed of ten sections. In Sec. II,
introduce the mechanical systems of the billiard with a v
tical constant acceleration. The linear stability analysis is
scribed in Sec. III, and it plays an important role to obta
the phase diagram as shown in Sec. IV.

In Sec. V, we show that a diffusive type of transport exi
in the system. The calculation of the diffusion coefficient
expressed in terms of the velocity autocorrelation functi
The autocorrelation function decay algebraically in the
gion of energy where elliptic periodic orbits exist. In th
energy ranges where no islands can be detected numeri
the diffusion coefficient is shown to be an irregular functi
of energy.

In Sec. VI, we discuss the case that the system is
turbed by a weak noise, the decay of the correlation func
is of exponential type and, hence, the diffusion is norm
because the small islands are destroyed by the weak n
The oscillatory dependence of the diffusion coefficient
energy is shown.

In the case of the infinite radius of the curvature of t
billiard wall, we show the existence of an invariant Cant
like subset of chaotic motion in Sec. VII.

In Sec. VIII, we introduce a different billiard with a saw
toothlike floor in order to elucidate the unique behavior
the oscillatory dependence of the diffusion coefficient e
denced in Sec. VI, as well as the irregular behavior of
diffusion coefficient described in Sec. V.

Summary and conclusions are drawn in Sec. IX, wh
we also discuss the possible experimental application of
results of Sec. VI.

II. THE BILLIARD WITH A VERTICAL CONSTANT
ACCELERATION

The class of billiards we consider are composed of a p
particle of massm moving in a constant vertical acceleratio
g so that its Hamiltonian is

H5
1

2m
px

21
1

2m
py

21mgy, ~1!

wherex andy denote the horizontal and vertical coordinat
of position, respectively, whilepx andpy are the correspond
ing momenta. The point particle undergoes elastic collisi
on the floor. The shape of the floor is given by the functi

y5h~x!5h~x11!, ~2!

which is periodic in the horizontal directionx and has a
piecewise-continuous second derivative. Therefore, the fl
consists of copies of a fundamental tile, as shown in Fig
03621
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If the energy is very small, the point particle is confined
one of the holes in the floor. The dynamical properties of
point particle in such holes is reminiscent of the ‘‘wed
billiards’’ that consist of two flat walls intersecting with eac
other at the bottom and that have been studied in detail b
numerically and analytically@11,12#.

If the energy is high enough, the point particle can jum
over the top of each tile and wander on the floor by bounc
back and forth.

In general, we can reduce the continuous time flow of o
system to a two-dimensional mapping called the Poinca´-
Birkhoff mapping that rules the time evolution from collisio
to collision. This mapping is area preserving in the so-cal
Birkhoff coordinatesz5(s,v), which are the arc of perim-
eters and the component of velocityv that is tangent to the
wall, both taken at the point of impact reported to the fu
damental tile of the lattice. With such a Poincare´-Birkhoff
construction, the flow can be shown to be completely equi
lent to the iteration@13,14#:

zn115f~zn!,

tn115tn1t~zn!, ~3!

l n115 l n1a~zn!,

where the first equation gives the Poincare´-Birkhoff mapping
itself, and where the second equation gives the succes
times $tn% of collision if t(z) is the time of flight between
two successive collisions. In the third equation of Eq.~3!,
a(z) is an integer depending on the previous collision a
giving the signed number of tiles the particle has jump
over during its flight.a(z) is positive~negative! if the par-
ticle jumps to the right~left!. The collisional dynamics of the
particle can thus be expressed as the successive iteratio
this Poincare´-Birkhoff mapping.

III. LOCAL LYAPUNOV EXPONENTS

The vertical components of position and momentum
the particle are convenient to study billiards in a vertic
external field, instead of the components perpendicular to
orbit as commonly used in the case of plane billiards,
cause the vertical acceleration breaks the isotropy of the
tion. In these vertical components, the mapping can be
earized and written as a matrix. The dynamical instabi
can be characterized by the Lyapunov exponent that is
rate of exponential separation between trajectories iss

FIG. 1. The spatially extended billiard composed of a po
particle moving in a downward vertical field and bouncing on
periodically corrugated floor. The floor is made of arcs of parabo
intersecting at right angle (r 51/2). In our case,m51 andg515.
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from arbitrarily close initial conditions. We can show that t
Lyapunov exponentl is given by

l5 lim
N→`

1

TN
(
n51

N

lnUS 12
m2g2tn21

2

pn21
2 D

1tn21

pn21
2 1pn

22m2g2tn21
2

2pn21
2

Bv
(1)~n21!U , ~4!
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where TN5(n51
N tn21 is the sum of the times of flighttn

5t(zn) betweenN successive collisions, andpn
2/2m is the

kinetic energy of a particle at thenth collision ~see Appen-
dix!. The quantityBv

(1)(n) is related to the curvature of a
expanding wave front of trajectories accompanying the p
ticle and evaluated just after thenth collision. This quantity
is given by recursion according to the following continuo
fraction,
Bv
(1)~n!5

2mg

pncoswn
S kn

m2g
pn

22sinanD 1

12
m2g2tn21

2

pn21
2

tn21

pn21
2 1pn

22m2g2tn21
2

2pn
2

2
1

2m2g2tn21

pn21
2

2S 12
m2g2tn21

2

pn21
2 D Bv

(1)~n21!

,

~5!
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wherekn is the curvature of the floor,an denotes the angle
between the outer normal to the floor and the horizontal li
and wn is the angle between the normal and the outgo
velocity, all these quantities being evaluated at thenth colli-
sion point.

In the following, we consider that the floor is made
parabolic tiles

y52
1

2r
~x2 l !2 for l 2

1

2
,x, l 1

1

2
, ~6!

where l is an integer. Moreover, the successive parabo
intersect with each other at right angle of 90°, as shown
Fig. 1. This condition imposes thatr 51/2. We choosey
50 as the top of the parabola. Therefore, the particle
trapped in one of the intervalsux2 l 21/2u<(1/2)
2A22Er/mg if its energy is negative, although the partic
is no longer trapped if its energy is positive.

If the energy of the particle is negative and so small t
the curvature in the vicinity of the intersection is almo
negligible, its dynamics is completely chaotic because
system can then be very well approximated by a wedge
liard that is fully chaotic as proven in the case where
angle of the wedge is larger than 90°@11,12#. However, in
this case, the particle is confined in a hole near the inter
tion of two successive parabolas. As energy increases,
curvature of the floor starts to play a very important role.

If the total energy is positive, the particle can jump ov
the parabolas and wander in an unbounded diffusive mot
An important threshold occurs at the critical energyEth
5mgr/2. At this threshold, the point particle launched fro
the intersection between two parabolas flies to the next in
section by creeping the parabolic floor.
,
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In Eq. ~6!, it turns out that, if the energy is very small, th
curvature contribution (kn /m2g)pn

2 is less than the contribu
tion sinan due to the slope of the floor. Both contribution
cancel out each other precisely at an energy equal to
threshold Eth5mgr/2, where the point particle launche
from the intersection between two parabolas flies to the n
intersection by creeping the parabolic floor. The curvat
contribution becomes larger than the slope contribut
above the threshold energyEth . Indeed, the system has
nearly fully chaotic dynamics above this threshold due to
defocusing character of the collisions on the floor, and all
stability islands are much smaller than the size of
Birkhoff phase space as shown in Fig. 2.

In Fig. 6, we depict by a dotted line, the average value
the Lyapunov exponent of our system. We observe that,

FIG. 2. Phase portraits of the billiard in the space of Birkho
coordinates (s,v) corresponding to one parabolic tile at the ener
E514.2. The chaotic sea covers most of phase space.
5-3
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TAKAHISA HARAYAMA AND PIERRE GASPARD PHYSICAL REVIEW E 64 036215
average, the Lyapunov exponent is positive, showing that
system is indeed chaotic. The observed dependence on
ergy can be understood by supposing that the instabilit
caused by the defocusing character of the collisions on
corrugations of the floor. Since the trajectory is parabo
between the collisions, we can estimate the perturbation
the horizontal positionxn11 at the (n11)th collision that is
caused by a perturbation on the angleun between the veloc-
ity and the horizontal axis at thenth collision. At high ener-
gies, most of the jumps reach a height that is larger than
corrugations of the floor so thatxn11.xn1(vn

2/g)sin(2un)
because the trajectory is a parabola. Accordingly, the per
bation on the next horizontal position is of the order
dxn11;(E/mg)dun . The perturbation on the next angle
dun11;dxn11 /r because the radius of curvature of the flo
is approximately equal tor. Hence, the perturbation on th
angle is amplified according todun11;(E/mgr)dun at each
collision, so that the average Lyapunov exponent of the m
is estimated aslmap; ln(dun11 /dun);ln(E/mgr). On the
other hand, the average vertical and horizontal veloci
scale like A^vx

2&;A^vy
2&;AE/m. Therefore, the averag

time of flight scales likê t&;A^vy
2&/g;AE/mg2. Since the

average Lyapunov exponent of the flow is equal to the av
age Lyapunov exponent of the map divided by the aver
time of flight, l5lmap/^t&, we infer that the Lyapunov ex
ponent decreases asl;(gAm/E)ln(E/mgr) in the limit E
→` in agreement with the behavior observed in Fig. 6.

IV. PHASE DIAGRAM

We have also studied the local behavior of the Lyapun
exponent in order to investigate the nonhyperbolicity of o
system. When the initial point is in an elliptic island, th
local Lyapunov exponent of the orbit is vanishing. On t
other hand, we observed that the local Lyapunov exponen
an orbit of the chaotic sea is positive and larger than o
Accordingly, the existence of elliptic islands can be nume
cally investigated with the local Lyapunov exponent.

Taking into consideration the symmetry of the pha
space of the Birkhoff coordinate, we have taken 1 000 0
initial points distributed over a quarter of the phase spa
Using the local Lyapunov exponents, we have been abl
find very small elliptic islands that cannot be detected oth
wise in a phase portrait. For example, the orbit in Fig. 2
chaotic, and no elliptic island seems to exist in the ph
portrait. However, the method of the local Lyapunov exp
nents detects the tiny elliptic islands shown in Fig. 3.

In the phase diagram of Fig. 4, each black square den
a parameter value where at least one elliptic island is
tected by the aforementioned method. One can recog
structures that are reminiscent of the Arnold tongues. T
white regions of the phase diagram of Fig. 4 may corresp
either to systems with undetected extremely small ellip
islands, or to fully chaotic systems.

In Fig. 4, one can see a periodic structure of energ
which can be understood as follows. As energy increases
maximum jump also increases. When the total energyE of
the particle is in the range of@( l 21/2)mg/2,(l 11/2)mg/2#,
the particle can jump overl tiles if it starts from an intersec
03621
ur
en-
is
e

c
n

e

r-
f

r

p

s

r-
e

v
r

of
e.
-

e
0
e.
to
r-
s
e
-

es
e-
ze
e
d

c

s,
he

tion between two parabolas.~We have here taken the valu
r 51/2.! Since the floor is periodic a similar behavior ha
pens if the maximum jump reaches a similar point, whi
occurs at the energiesEl5( l 21/2)mg/2 with l 51,2,3, . . .
Hence, similar structures appear repetitively over the per
DE5mg/2.

On the line ofr 50.5, all the islands are much smalle
than the whole energy surface at the energies above
thresholdEth .

V. DIFFUSIVE TRANSPORT IN ABSENCE OF NOISE

The diffusion coefficient is defined by Einstein’s formul

D5 lim
t→`

1

2t
^@x~ t !2x~0!#2&, ~7!

where the averagê•& is carried out over a statistical en
semble of initial conditions that could be distributed un
formly in the Birkhoff phase space. The diffusion coefficie
can be expressed by a Green-Kubo formula in terms of
iterative dynamics given by Eqs.~3! as

FIG. 3. Enlargement of the small region of the space of Birkh
coordinates (s,v) where we observe the elliptic island at the sam
energy as in Fig. 2.

FIG. 4. Phase diagram in the case of the floor made of parab
tiles. The black squares denote the existence of elliptic perio
orbits.
5-4
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DIFFUSION OF PARTICLES BOUNCING ON A ONE- . . . PHYSICAL REVIEW E 64 036215
D5
1

2^t& (
n52`

1`

^a~z!a~ f nz!&, ~8!

where the averagê•& is carried out over the uniform prob
ability distribution in the Birkhoff phase space@13#. The
Green-Kubo formula relates the autocorrelation funct
with the diffusion coefficient. We emphasize that Eq.~8!
gives the diffusion coefficient of the continuous-time dyna
ics. The autocorrelation function is defined by

Cn~E![^a~z!a~ f nz!&, ~9!

wheren is the number of collisions.
If this autocorrelation function would decay algebraica

because of a sticking to an elliptic island, we cannot expe
finite diffusion coefficient. Such algebraic decays of the a
tocorrelation funcion occur in the presence of elliptic islan
which represents many parameter values as seen in the p
diagram of Fig. 4. Especially, the elliptic islands centered
a localized periodic orbit that do not transport particles in
horizontal direction strongly affect the autocorrelation fun
tion, as shown in Fig. 5. One can see that the autocorrela
function has peaks corresponding to values of the ene
where the aforementioned periodic orbits exist. In suc
case, we cannot expect that the diffusion coefficient is fin
because the autocorrelation function does not decay to z

However, the phase diagram also shows the possib
that no elliptic island exists in certain energy ranges that
the blank region in Fig. 4. In the absence of elliptic islan
we would expect that an effective diffusion coefficient exi
and is finite. This diffusion coefficient has been calcula
numerically and is depicted in Fig. 6 as a function of ener
In Fig. 6, we observe a rich structure depending on the
ergy scale. This structure is numerically reproducible and
not due to statistical fluctuations in the numerical calculati

The curve of the diffusion coefficient has a very irregu
fine structure. The inset of Fig. 6 depicts a zoom on the cu
showing the persistence of fine structures on smaller en
scales. This apparent self-similar behavior has also been
served in a piecewise-linear one-dimensional mappings
the diffusion coefficient varies with the slope@6–9#. Here, a
very analogous behavior is observed in a mechanical sys
as the energy of the particle is varied. This complex beha

FIG. 5. The jump autocorrelation function at the 12th collisi
vs energy. The peaks appear at the energies where elliptic per
orbits without horizontal particle transport exist.
03621
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has its origin in the fact that the topology of the trajector
changes with energy, i.e., the system is not structur
stable.

In order to understand in more detail this strange beha
we have considered the energy dependence of each o
autocorrelation coefficientsCn(E)5^a(z)a(f nz)& in the se-
ries of Eq.~8!. Each one of these coefficients has a smo
dependence on energy but the sum of them turns out to
irregular. The autocorrelation coefficientsCn(E) are numeri-
cally observed to decay exponentially with the numbern of
collisions, as seen in Fig. 7~a!. Consequently, we would infe
that the series~8! converges to a finite diffusion coefficien
On the other hand, the autocorrelation coefficientsCn(E)
oscillate with the energyE more and more rapidly asn in-
creases because the sensitivity to initial conditions gener
a sensitive dependence on the control parameterE. Indeed, in
each derivative (d/dE)Cn(E), we find products of the type
)k5m11

n21 (]f/]z)(f kz)•(]f/]E)(f mz) with m50, . . . ,n22.
Such products grow exponentially in a way controlled by t
Lyapunov exponents of the mapf. Accordingly, we can ex-
pect that the derivativesdCn(E)/dE do not decay with then
number of collisions. We have confirmed this expectation
a numerical evaluation of these derivatives that indeed do
decay asn→` @see Fig. 7~b!#.

These properties are reminiscent of those of the We
strass function

W~E!5 (
n50

`

an sin~bnE!, ~10!

which is known to be nowhere differentiable provided th
0,a,1, b.1, andab>1 @15#. For the Weierstrass func
tion, the terms decay exponentially in the series~10! al-
though they grow in the series defining the derivati
dW/dE. A very similar behavior is here observed for th
diffusion coefficient of our system. Therefore, we think th
the series(n51

` dCn(E)/dE do not converge so that the dif
fusion coefficient~8! is a nondifferentiable function of en
ergy in analogy with the Weierstrass function.

dic FIG. 6. Diffusion coefficientD ~solid line! and Lyapunov expo-
nent l ~dashed line! vs energyE ~above the threshold energyEth

5mgr/25mg/453.75). The diffusion coefficient oscillates wit
the periodDE5mg/257.5. Inset: Zoom on the beginning of th
curve of the diffusion coefficient, showing the irregularity of th
curve on smaller scales.
5-5
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TAKAHISA HARAYAMA AND PIERRE GASPARD PHYSICAL REVIEW E 64 036215
The result of this section clearly shows that the effect
diffusion coefficient has an irregular dependence on the
ergy of the particle. This phenomenon is reminiscent o
similar behavior observed in piecewise-linear maps@6–9#.
However, we should notice that these piecewise-linear m
are strictly hyperbolic, while the present system is n
Therefore, part of the irregularity could be attributed to t
fact that the energy values at which elliptic islands exist fo
a set in the phase diagram that is like a dense set. In this c
the structural instability of the topology of trajectories wou
be more important compared to the case of expand
piecewise-linear maps with a varying slope.

VI. DIFFUSION IN THE PRESENCE OF NOISE

The small elliptic islands are easily destroyed by the p
turbation of a weak noise. Indeed, we have introduce
weak noise in our system by changing at random the di
tion of the velocity just after an elastic collision. This noise
weak in the sense that the velocity angle is randomly p
turbed by small angles less than6ep/2. Therefore, the en
ergy of the particle does not change. With such noises,
iterative dynamics is modified as

zn115F~zn ;hn!,

vn115coshnvn118 1sinhnA2E/m22gyn112vn118 2,
~11!

~xn11 ,vn118 !5f~zn!.

FIG. 7. ~a! Decay of the autocorrelation coefficientCn(E)
5^a(z)a(f nz)& vs n, at the energyE55. The main figure depicts
uCnu vs n with a vertical logarithmic scale while the inset depictsCn

vs n in order to show its oscillations.~b! DerivativesdCn(E)/dE vs
n at the same energy.
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In Eq. ~11!, hn is a random number uniformly distributed i
@2e1 ,e2#, where

e15minH p

2
e,aJ ~12!

and

e25minH p

2
e,p2aJ , ~13!

a being the angle between the postcollision velocity and
unit vector tangent to the floor at the point of collision.

This weak noise has the effect that the peaks of the a
correlation function due to the elliptic islands decrease as
intensity of the noise increases. These peaks almost vani
noise intensitiese larger than 0.08, as shown in Fig. 8.

We also notice that the peaks of the autocorrelation fu
tions decrease faster at the energy around 14 than that a
energy around 10 as shown in Fig. 9. Therefore, we concl
that the higher the energy of a particle, the faster the peak
autocorrelation function decrease.

Figure 10 depicts the autocorrelation function of the s
tem perturbed by a weak noise at the intensitye equal to

FIG. 8. The heights of the peaks of the autocorrelation funct
around the energy equal to 10, as a function of the noise ampli
e. The peaks decrease as the intensitye of noise increases.

FIG. 9. The heights of the peaks of the autocorrelation funct
around the energy equal to 14, as a function of the noise ampli
e. We observe that the heights decreases faster than for an en
equal to 10.
5-6
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DIFFUSION OF PARTICLES BOUNCING ON A ONE- . . . PHYSICAL REVIEW E 64 036215
0.08. One can see that the autocorrelation function rap
decays in an exponential-like behavior, in the presence
weak noise.

Since the size of the elliptic islands is always mu
smaller than the size of the phase space in the present
tem, the orbits can escape from the elliptic islands under
effect of a weak noise. Indeed, we have observed that
autocorrelation function decays exponentially already
weak noises. Accordingly, normal diffusion and a finite d
fusion coefficient can be expected already for such w
noise.

When the system is perturbed by small noises, the di
sion coefficient is also given by Eq.~7! but where the aver-
age^•& is now carried out over both a uniform probabili
distribution in the Birkhoff phase space and over the no
This diffusion coefficient has been calculated numerica
and is depicted in Fig. 11 as a function of energy. The
pendence on energy is very similar to the one in the abse
of noise seen in Fig. 6. However, the fine irregular structu
are now smoothened as expected. Nevertheless, ther
mains an oscillatory dependence on energy superimpose
an increase of the diffusion coefficient with energy.

This gross increase of the diffusion coefficient with e
ergy can be explained by considering a random-walk mo
as in Ref.@16#. In such a random walk, the mean free flig
can be estimated as the mean intercollision time multip
by the average horizontal velocity of the particle:L

FIG. 10. The autocorrelation function with small noises of a
plitude e50.08 at the energyE510. The autocorrelation decay
very fast like an exponential as the collision timen increases.
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2&^t&. Since the diffusion coefficient is roughly equ

to the square of the mean free flight divided by the interc
lisional time, we infer thatD;L2/^t&;g21(E/m)3/2, which
explains the gross increase of the diffusion coefficient w
energy.

Besides, the oscillations of the diffusion coefficient wi
energy can be understood in the same way of the perio
structure seen in the phase diagram of Fig. 4. Accordin
the diffusion coefficient oscillates with energy with the p
riod DE5mg/2.

VII. ESTIMATION OF THE DIFFUSION IN THE CASE OF
INFINITE RADIUS OF THE CURVATURE

When the radius of curvature of the floor is infinite
large, we will show that there exists an invariant subset
trajectories, which has a fully chaotic dynamics. The meth
we use is inspired by the work of He´non @17#.

A. Derivation of a piecewise-linear mapping

The horizontal positionx1 and the velocityv1 tangent to
the floor after one flight between collisions are obtained
solving the Hamilton equation. Hence, one can express th
explicitly by the initial horizontal positionx0 and the initial
horizontal and vertical velocities,ux0 anduy0,

- FIG. 11. Diffusion coefficientD vs energyE in the presence of
a weak noise. We observe that the diffusion coefficient oscilla
with the periodDE5mg/257.5.
x15x01S g

ux0
2

2
1

r D 21F S x0

r
1

uy0

ux0
2

c1

r D6AS x0

r
1

uy0

ux0
2

c1

r D 2

1
2~c02c1!

ux0
2 r

H ux0uy01gS x02
c01c1

2 D J G , ~14!

and

v5H 11
1

r 2
~x12c1!2J 21/2H ux02

1

r
~x12c1!S uy02g

x12x0

ux0
D J . ~15!
5-7
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TAKAHISA HARAYAMA AND PIERRE GASPARD PHYSICAL REVIEW E 64 036215
Herec0 andc1 denote the integers equal to the centers of
tiles where the particle starts and arrives, respectively.

We assume that the radius of the curvature at the top
the tile is infinitely large, and the particle starts in almo
vertical directions. Therefore, we can neglect the terms of
order of r 21 and obtain

x15x01
2ux0uy0

g
, ~16!

and

v15ux01
uy0

r
~x12c1!. ~17!

By the same approximation, we have

v05ux02
uy0

r
~x02c0!. ~18!

Substituting Eq.~18! into Eq. ~16! yields

x15x01
2uy0

2

gr
~x02c0!1

uy0

r
v0 . ~19!

From Eqs.~17! and ~18!, we get

v15v01
uy0

r
$~x02c0!1~x12c1!%. ~20!

We have assumed that the horizontal velocity and
height of the tile is extremely small so that we obtain

uy05A2E

m
. ~21!

From Eqs.~19!, ~20!, and~21!, we get

x15x01
4E

mgr
~x02c0!1

2

g
A2E

m
v0 , ~22!

and

v15v01
1

r
A2E

m
$~x02c0!1~x12c1!%. ~23!

Note that this mapping is area preserving because the
sumption of the infinite radius of curvature makes the ho
zontal momentum conjugate to the horizontal position.

Following Hénon and for simplicity@17#, we change the
scale of the velocityv to w,

w[HA g

2r S 21
4E

mgrD J
21

v, ~24!

and define a new parameterf,

f[cosh21S 11
4E

mgrD . ~25!
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Thus, we finally obtain the following symplectic mapping

xj 115~xj2cj ! coshf1wj sinhf1cj ~26!

and

wj 115~xj2cj ! sinhf1wj coshf1~cj2cj 11!tanh
f

2
,

~27!

where j denotes the number of collisions. Note that the
mension ofw is the same asx.

B. Construction of a chaotic subset

We show that there exist orbits for which the horizon
momentum always remains small during the whole time e
lution.

Substitutingxj andwj by recursion, one can obtain

xj2cj5~x02c0!coshj f1w0 sinh j f

1 (
k51

j
1

sinhf
~ck212ck!$sinh~ j 2k11!f

2sinh~ j 2k!f%, ~28!

and

wj5~x02c0!sinh j f1w0 coshj f1 (
k51

j
1

sinhf
~ck212ck!

3$cosh~ j 2k11!f2cosh~ j 2k!f%. ~29!

Accordingly, the sum of the above terms yields

~xj2cj1wj !e
2 j f5x02c01w01

2ef

ef11

3 (
k51

j

~ck212ck!e
2kf. ~30!

The horizontal distance and the velocity of one flight ha
maximum because the energyE is finite. Therefore, the term
(xj2cj1wj ) does not increase exponentially as the num
of collision times increases without bound. Hence the le
hand side of Eq.~30! should vanish asj goes to infinity, and
we obtain

x01w05
ef21

ef11
S c012(

k51

`

cke
2kfD . ~31!

In the same way, we also obtain

x02w05
ef21

ef11
S c012 (

k52`

21

cke
2kfD . ~32!

From Eqs.~31! and~32!, the initial position and momentum
are expressed by the integers corresponding to the cente
the tiles,
5-8
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x05
ef21

ef11
H c01 (

k51

`

~ck1c2k!e
2kfJ , ~33!

and

w05
ef21

ef11
H (

k51

`

~ck2c2k!e
2kfJ . ~34!

Therefore, we also have

xj5
ef21

ef11
H cj1 (

k51

`

~cj 1k1cj 2k!e
2kfJ , ~35!

and

wj5
ef21

ef11
H (

k51

`

~cj 1k2cj 2k!e
2kfJ . ~36!

We derived the piecewise-linear mapping~26! and~27! by
assuming that the particle always bounces almost vertic
and hence the piecewise-linear mapping does not desc
the orbits for which the momentum becomes large during
time evolution. Accordingly, we focus on those orbits th
jump l tiles at most. Thus, we obtain an invariant subset t
is infinitely extended in position, but finite in momentum
The dynamics on this invariant subset is always hyperb
because the Lyapunov exponent of the map is equal tof.
This invariant subset is thus composed of unstable orbits

From Eq.~27!, the previous assumption yields

2S 1

2
1 l D<~xj2cj !coshf1wj sinhf<S 1

2
1 l D , ~37!

which leads to

ef>A114l . ~38!

The horizontal positionxj should always exist in the tile
of the numbercj ,

2
1

2
,xj2cj,

1

2
. ~39!

On the other hand, from Eq.~35!, we have

xj2cj5
ef21

ef11
F (

k51

`

$~cj 1k2cj !1~cj 2k2cj !%e
2kfG .

~40!

Since the maximum jump isl, we obtain from Eq.~40! that

2
ef21

ef11
H 2l (

k51

`

ke2kfJ <xj2cj<
ef21

ef11
H 2l (

k51

`

ke2kfJ .

~41!

From Eqs.~39! and ~41!, we finally obtain

ef.2l 1A4l 211. ~42!
03621
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Note that the condition~42! automatically contains the con
dition ~38!.

If the energy of the particle satisfies Eq.~42!, the dynam-
ics on the invariant subset can be described by a symb
dynamics made of the infinite symbols$ . . . ,22,21,0,
1,2, . . .%. An example of the invariant subset considered
this section is depicted in Fig. 12.

C. Estimation of the diffusion coefficient

The mean square of the displacement of a flight over
invariant subset grows linearly to the increase of time. A
cordingly, we can obtain an estimation of the diffusion co
ficient of the system based on the dynamics restricted to
invariant subset.

The diffusion coefficientD can be evaluated by a statist
cal average over the invariant subset. Using Eq.~35!, one can
obtain

^~xt2x0!2&5
1

3
l ~ l 11!H t1

2

~ef11!2
te2(t21)f

1
4~e2f1ef11!

~ef21!~ef11!3
ef~e2t21!J , ~43!

so that an approximate value of the diffusion coefficient
given by

D5
1

6
l ~ l 11!. ~44!

It is important that the timet of one flight is constant
because we assumed that the orbit of the particle is alm
always vertical, and hence we have

t5
2

g
A2E

m
. ~45!

FIG. 12. The chaotic invariant subset in the case where the fl
has an infinitely small curvature. In this case,E515A(521)/2,m
51,g515,r 52. The maximum jumpl is equal to 1.
5-9
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The minimum energy for the complete symbolic dynam
with maximum jumpl is given by replacing the inequality o
Eq. ~42! to an equality,

2l 1A4l 211511
4

mgr
E1A 4

mgr
ES 21

4

mgr
ED ,

~46!

and thus we obtain

l 5A 2E

mgr S 11
2E

mgrD . ~47!

Therefore, from Eqs.~44!, ~45!, and ~47!, we can estimate
the energy dependence of diffusion coefficients from be
as the energy becomes large,

D;
1

3A2gr2 S E

mD 3/2

. ~48!

Note that this estimation is consistent with our previous
sult derived by the consideration of a random walk in the l
section.

In the same way, one can obtain the velocity autocorre
tion function

C~ t ![^~xt112xt!~x12x0!&

5
1

3
l ~ l 11!S ef21

ef11
D 2S utu1

e2f11

e2f21
D e2utuf, ~49!

which allows us to confirm the value~44! of the diffusion
coefficient by using the Green-Kubo formula,

D5
C~0!

2
1(

t51

`

C~ t !. ~50!

D. Lower bound on the topological entropy

Thanks to the invariant subset, we can also obtain a lo
bound on the topological pressure function@13,18# as

P~b!> ln~2l 11!2bf. ~51!

The pressure function is known to give the topological e
tropy atb50. Accordingly, we obtain a lower bound on th
topological entropy of the system as

htop5P~0!> ln~2l 11!. ~52!

Moreover, we can obtain the value of the Hausdorff dime
sion of the invariant subset of orbits considered in this s
tion. Indeed, the partial Hausdorff dimension in the stable
unstable directions is known to be given by the zero of
pressure function asP(dH)50, so that we get

DH52dH52
ln~2l 11!

f
. ~53!
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Note that the Hausdorff dimension is less than 2 becaus
Eq. ~42!.

In this section, we have studied the dynamics of our c
otic billiard in an external field in the limit where the curva
ture of the floor is arbitrarily small. By deriving a piecewis
linear mapping, we have shown that there exists a hyperb
invariant subset of orbits for which the particle alwa
bounces almost vertically during its time evolution.

VIII. SAWTOOTH FLOOR

It is important to investigate other shapes of the floor
order to clarify the parameter dependence of the diffus
coefficient. In this section, we consider a floor made of
angle tiles,

y52
1

2R
ux2 l u for l 2

1

2
,x, l 1

1

2
, ~54!

wherel is an integer. Moreover, the successive triangles
tersect with each other at the angle of 120°, as shown in
13.

This condition imposes thatR5A3/2. We choosey50 as
the top of the triangle. Therefore, the particle is trapped
one of the intervalsux2 l 21/2u<(1/212ER/mg) if its en-
ergy is negative, although the particle is no longer trappe
its energy is positive.

When the energy of the particle is negative, its dynam
is completely chaotic because the system is precisely
same as a wedge billiard that is fully chaotic as proven in
case where the angle of the wedge is larger than 90°@11,12#.
The Lyapunov exponent of the wedge billiards takes
maximum value when the angle of the intersection of the
walls is 120° @11#. However, in these cases, the particle
confined in a hole near the intersection of two success
triangles.

If the total energy is positive, the particle can jump ov
the triangles and wander in an unbounded diffusive moti
Even for positive energies, elliptic periodic orbits and qua
periodic orbits cannot be detected on a typical phase port
However, very small elliptic islands are detected by t
methods of the local Lyapunov exponents explained in S
III, as shown in the phase diagram of Fig. 14. One can
the same periodic structure of the phase diagram with
periodDE5mg/2 as in the case of the floor made of par
bolic tiles.

FIG. 13. The spatially extended billiard composed of a po
particle moving in a downward vertical field and bouncing on
sawtooth-shaped floor. The angle of the edge is 2p/3. In our case,
m51 andg515.
5-10
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The effective diffusion coefficient without noise is d
picted in Fig. 15. The diffusion can be expected to be norm
in those ranges of energies without elliptic island, i.e., wh
the black squares do not appear in Fig. 14. The diffus
coefficients do not oscillate in a well-pronounced perio
manner as in the case of the parabolic tiles.

For the sawtooth floor, the effective diffusion coefficie
also shows a fine irregular structure as shown in the inse
Fig. 15. We have here also computed the jump autocorr
tion function and its derivative with respect to energy,
shown in Fig. 16. One observe that the autocorrelation fu
tion decays very fast although its derivative does not app
to decay. Therefore, we expect a similar irregular dep
dence of the diffusion coefficient on energy as in the case
the floor made of parabolic tiles.

Moreover, we have also studied the average Lyapu
exponent in the case of the sawtooth floor. Since the cu
ture of the floor is zero, the collisions are not defocus
contrary to the case of parabolic tiles and we infer that
average Lyapunov exponent of the map does not depen
energy. On the other hand, the average vertical and hori

FIG. 14. Phase diagram in the case of the sawtooth floor.
black squares denote the existence of elliptic periodic orbits.
have thatr 52/A3R.

FIG. 15. Diffusion coefficientD vs energyE for the case of the
sawtooth floor. The diffusion coefficient oscillates with the peri
DE5mg/257.5. Inset: Zoom on the beginning of the curve of t
diffusion coefficient, showing the irregularity of this curve o
smaller scales.
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2&;A^vy

2&;AE/m. Therefore,
the average time of flight scales likêt&;A^vy

2&/g
;AE/mg2. The average Lyapunov exponent of the flow
equal to the average Lyapunov exponent of the map divi
by the average time of flight,l5lmap/^t&. Hence, we infer
that the Lyapunov exponent decreases asl;(gAm/E) in the
limit E→` in agreement with the behavior observed in F
17.

Therefore, the local Lyapunov exponents of the parabo
floor is much larger than that of the sawtooth floor. Bo
systems are chaotic and the islands are very small when
exist. However, the instabilities are very different as me
sured by the local Lyapunov exponents.

IX. SUMMARY AND CONCLUSION

In this paper, we have studied a class of chaotic billia
consisting of a point particle moving in a constant vertic

e
e

FIG. 16. ~a! Decay of the autocorrelation coefficientCn(E)
5^a(z)a(f nz)& vs n, at the energyE53. The main figure depicts
uCnu vs n with a vertical logarithmic scale while the inset depictsCn

vs n in order to show its oscillations.~b! DerivativesdCn(E)/dE vs
n at the same energy.

FIG. 17. Local Lyapunov exponentl vs energyE in the case of
the sawtooth floor.
5-11
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TAKAHISA HARAYAMA AND PIERRE GASPARD PHYSICAL REVIEW E 64 036215
field and bouncing on a periodically corrugated floor. Tw
kinds of floors have been investigated: one made of parab
tiles and the other of triangular tiles.

In the case of parabolic tiles, we have shown that
dynamics is chaotic but nonhyperbolic and that this ch
induces a horizontal diffusive transport of the particle. T
diffusion is normal if the deterministic motion is perturbe
by a weak noise and the diffusion coefficient has an osc
tory dependence on energy. The present result clearly sh
that an oscillatory dependence of a transport coefficient
the control parameters of a system is a common phenome
that should be expected not only in abstract mappings
the standard mapping but also in mechanical systems suc
the present billiards.

In the absence of noise, the nonhyperbolicity of the d
namics generates a very rich structure, both in phase sp
in parameter space, as well as in the transport properties
have here constructed by a method based on the l
Lyapunov exponent a phase diagram in the parameter s
of our system showing the regions where elliptic islan
should be expected in the phase space. These regions h
complex structure reflecting the characteristic properties
the dynamics. The presence of the elliptic islands imply t
the time autocorrelation function of the jump from tile to ti
does not decay to zero so that the diffusion is not normal
such systems. However, in the apparent absence of ell
island, the autocorrelation function is numerically observ
to decay very fast, which suggests the existence of an e
tive diffusion coefficient. This effective diffusion coefficien
has an irregular—but numerically reproducible—depende
on energy.

We have estimated analytically the diffusion in the case
the infinitely small curvature of the billiard wall and on th
basis of an invariant subset of orbits in correspondence w
a symbolic dynamics defined on an infinite alphabet of sy
bols. We have characterized this chaotic invariant subse
terms of its topological entropy and Hausdorff dimension

In the case of the sawtooth floor, we have shown sim
but different properties. We attribute the differences to
fact that the collisions on the walls of the triangular tiles a
not defocusing contrary to the collisions on parabolic til
The phase diagram of the sawtooth floor shows the s
structures as in the case of the parabolic-tiled floor. Howe
the diffusion coefficient of the sawtooth floor does not osc
late in the same well-pronounced manner as the parab
tiled floor. On the other hand, the effective diffusion coef
cients has an irregular dependence on energy in both ca

In the case that the particle is electrically charged and
its vertical acceleration is caused by an electric field,
diffusion coefficient would be proportional to the electr
conductance. In this case, our billiard can find an experim
tal realization in the form of semiconducting devices.
semiconducting devices, the thermal fluctuations as wel
the impurities introduce some noise that modifies the de
ministic motion. Accordingly, the fine dependence of the d
fusion coefficient on energy cannot be expected in such
periments.

On the other hand, the present work shows that the os
latory dependence of the diffusion coefficient on energy
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preserved by weak noises. This result suggests that suc
oscillatory dependence may manifest itself in the elec
conductance of such a semiconducting device.
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APPENDIX: LINEAR STABILITY OF BOUNCING
PARTICLES

Let us suppose that a particle of massm moves subject to
a constant vertical accelerationg and launches from the floo
at the originO(0,0) with the anglew0 measured by the oute
normal of the floor as shown in Fig. 18. The horizontal a
vertical velocity of the particle at the origin areu0 and v0,
respectively. Then the orbitT0 of the particle is

y52
g

2u0
2

x21
v0

u0
x. ~A1!

We consider another orbitT08 of the particle of the same
energy launching from the floor at the pointO8 (Dx0 ,Dy0)
infinitesimally close to the origin with the anglew1Dw. The
horizontal and vertical velocity of this particle at the poi
O8 areu08 andv08 , respectively. Then we have

Dx05sin~g01w0!Ds0 ,

Dy052cos~g01w0!Ds0 , ~A2!

FIG. 18. The infinitesimal change of the original orbit at th
collision point causes the infinitesimal change at the following c
lision.
5-12
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where

v0

u0
5tang0 , ~A3!

andDs0 is the distance between the pointsO andO8. Due to
the conservation of the energy, we obtain

1

2
mu0

21
1

2
mv0

25
1

2
mu0

21
1

2
mv0

21mgDy. ~A4!

Neglecting the higher order terms of infinitesimal quantit
yields

u0Du01v0Dv05g cos~g01w0!Ds0 . ~A5!

The slope of the orbitT08 at the pointO8 is

v08

u08
5tan@g02Dw02k~s0!Ds0#, ~A6!

where k(s0) is the curvature of the floor at the originO
measured by the outer normal. In the case of the parab
tiles described by Eq.~6! in the text, the curvature is give
explicitly as

k~s!5
1

r H 11
1

r 2
~x2 l !J 23/2

, ~A7!

where we supposed thex coordinate of the collision points
on the floor is contained in the region (l 21/2,l 11/2).

From the leading order of the infinitesimal quantities
Eq. ~A4!, we obtain

u0Dv02v0Du05~u0
21v0

2!@2Dw2k~s0!Ds0#. ~A8!

From Eqs.~A5! and ~A8!, we obtain

S Du0

Dv0
D 5S m2g

p0
2

cos~g01w0!1v0k~s0! v0

m2g

p0
2

cos~g01w0!2u0k~s0! 2u0
D S Ds0

Dw0
D .

~A9!

By neglecting the second order ofDx, the orbitT08 can be
written as

y852
g

2u08
2

x821S v08

u08
1

g

u08
2
Dx0D x82

v08

u08
Dx01Dy0 .

~A10!

The floor can be approximated by the straight line in
vicinity of the pointC(x,y) of the collision,

y85j1~x82x!1y, ~A11!
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where j1 is the derivative of the curve of the floor. Thi
approximation is enough for the evaluation of the shiftDs1
that is the distance between the intersections of the orbitsT0

andT08 with the floor.
From Eqs.~A10! and ~A11!, we obtain

x15x11
x1

j12A1

1

u0
S 2A1Du01Dv01

g

2u0
DxD

1
1

j12A1
S 2

v08

u08
Dx01Dy0D , ~A12!

and hence

Ds15
A11j1

2

j12A1

1

u0
S 2A1Du01Dv01

g

2u0
DxD

1
A11j1

2

j12A1
S 2

v0

u0
Dx01Dy0D , ~A13!

whereA1 is the derivative of the orbitT0 at the point (x,y),

A152
g

2u0
2

x1
v0

u0
. ~A14!

The infinitesimal differenceDw1 between the angles o
the reflections of the orbitsT0 andT08 at the points (x,y) and
(x8,y8) is

Dw15Da81k~s1!Ds1 , ~A15!

whereDa8 is the infinitesimal angle between the lines ta
gent to the orbitsT0 andT08 as shown in Fig. 18. The deriva
tive A18 of the orbit T08 at the point (x8,y8) is given in the
first order of the infinitesimal angleDa8 as

A185A11~11A1
2!Da8. ~A16!

From Eqs.~A12!, ~A15!, and~A16!, we obtain

Dw15
1

11A1
2

1

u0
H S 22A11

v0

u0
DDu01Dv0J

1
1

11A1
2

g

u0
2 ~Dx02Dx1!1k~s1!Ds1 . ~A17!

By substituting Eqs.~A2! and ~A9! into Eqs.~A13! and
~A17!, we obtain
5-13
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S Ds1

Dw1
D 5S 2A11j1

2

j12A1
F2

x1

u0
A12

u0

g
$A1 tan~g01w0!11%G 2A11j1

2

j12A1
F2

x1

u0
2

v0

g
$A1 tan~g01w0!11%G

2

11A1
2 H 1

u0
S 22A11

v0

u0
D1

1

u0
tan~g01w0!J 2

11A1
2 H 1

u0
1

v0

u0
2

tan~g01w0!J D
1S 0

2
1

11A1
2

g

u0
2
Dx11k~s1!Ds1

D . ~A18!

After some manipulation of the matrices, we finally obtain the linearized mapping of the generalized Birkhoff coo
(Ds,Dps) whereps[psinw is the tangential momentum to the floor at the points,

S Ds1

Dps1
D 5S 1

p1 cosw1
0

0 p1 cosw1

D S m11 m12

m21 m22
D S p0 cosw0 0

0
1

p0 cosw0

D S Ds0

Dps0
D , ~A19!

where

m115
1

p0
2 ~m2g2t22p0

2!1
1

p0
2 H k~s0!

m2g
p0

22sin~g01w0!J mgt

cosw0
~mgt sing02p0!, ~A20!

m125
p0

m
t~mgt sing02p0!, ~A21!

m215
2m3g2t

p0
2p1

2
1

m2g~m2g2t22p1
2!

p0
3p1

2 H k~s0!

m2g
p0

22sin~g01w0!J 1

cosw0
1

m2g~m2g2t22p0
2!

p0
2p1

3

3H k~s1!

m2g
p1

22sin~g11w1!J 1

cosw1
1

m3g2t

p0
2p1

3 ~mgt sing02p0!H k~s0!

m2g
p0

22sin~g01w0!J
3H k~s1!

m2g
p1

22sin~g11w1!J 1

cosw0

1

cosw1
, ~A22!

and

m225
1

p1
2 ~m2g2t22p1

2!1
p0

p1

1

p1
2 H k~s1!

m2g
p1

22sin~g11w1!J mgt

cosw1
~mgt sing12p1!. ~A23!
y

in
t

x
q.

e

bi

e

ut
e

a-
In the above, we denote the time between the collisions bt.
One can see the mapping from (s0 ,ps0

) to (s1 ,ps1
) is

area preserving because the absolute value of the determ
of the matrix (mi j ) is one while the sign of this determinan
depends on the orbitT08.

In the following, we will derive the formula of the
Lyapunov exponent of the billiard in a constant vertical e
ternal field by using the linear stability matrices in E
~A19!.

The operatorRi defined by the transformation at the tim
i ~or the time of collision with the floor! from the perpen-
dicular components of the position and velocity to the or
to the respective vertical components is
03621
ant

-

t

Ri5S 2
1

cosg i
0

m2g

pi
cosg i sing i 2cosg i

D , ~A24!

where g i is the angle between the velocity vector of th
particle and the horizontal axis, andpi is the momentum of
the particle.

At first, we consider the case of the free flight witho
collision. The infinitesimal change of the orbit varies th
position and velocity from the original orbit in timet by free
flight in a constant vertical field. We define the transform
5-14
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tion of the infinitesimal change of the vertical components
the position and velocity of the particle by the free flight
Fi ,

Fi5S 1

pi 11 cosg i 11
0

0 pi 11 cosg i 11

D
3S 12

m2g2t2

pi
2

t

2m
~pi

21pi 11
2 2m2g2t2!

2
2m3g2t

pi
2pi 11

2
12

m2g2t2

pi 11
2

D
3S pi cosg i 0

0
1

pi cosg i

D . ~A25!

Next we consider the effect of thei th collision on the
infinitesimal change of the vertical components of the po
tion and velocity of the particle from the original orbit th
bounces on the floor with the anglew i measured from the
outer normal vector of the floor. The curvaturek i of the floor
plays a very important role of increasing the separation
the nearby orbits although the motion of the particle could
unstable even on the flat floor in the case of the presenc
a vertical external field. The infinitesimal change of the c
lision results in the transformationCi that operates the per
pendicular components of the position and velocity to
orbit:

Ci5S 21 0

2
2m2g

pi
H k i

m2g
pi

22sina i sin2 w iJ 1

cosw i
21D ,

~A26!

wherea i denotes the angle between the outer normal to
floor and the horizontal line. Consequently, one can ob
the transformation of the vertical coordinate by the infinite
mal change of the collision,

RiCiRi
215S 1

pi cosg i
0

0 pi cosg i

D
3S 21 0

2
2m2g

pi
3 H k i

m2g
pi

22sina iJ 1

cosw i
21D

3S pi cosg i8 0

0
1

pi cosg i8
D , ~A27!
03621
f

i-

f
e
of
-

e

e
in
-

whereg8 is defined as the angle between the orbit before
i th collision and the horizontal axis, i.e.,

g i85g i12w i2p. ~A28!

From Eqs.~A25! and~A27!, we obtain the transformation
of the infinitesimal change of the vertical coordinate due
the infinitesimal change of the orbit of thei th collision and
successive free flight just before the (i 11)th collision,

FiRiCiRi
215S 1

pi 11 cosg i 118
0

0 pi cosg i 118
D

3S 12
m2g2t2

pi
2

t

2m
~pi

21pi 11
2 2m2g2t2!

2
2m3g2t

pi
2pi 11

2
12

m2g2t2

pi 11
2

D
3S 21 0

2
2m2g

pi
3 H k i

m2g
pi

22sina iJ 1

cosw i
21D

3S pi cosg i8 0

0
1

pi cosg i8
D . ~A29!

In the case that the particle collides with the floor succ
sively at the timetn21 and tn , where (n21) andn denote
the (n21)th andnth collision respectively, from Eq.~A29!,
one can obtain the relation between the infinitesimal s
dqv(tn) at timetn anddqv(tn21) at timetn21 of the perpen-
dicular component of th position of the particle,

dqv~ tn!5dqv~ tn211tn21!

5H S 12
m2g2tn21

2

pn21
2 D 1

tn21

2

3
pn21

2 1pn
22m2g2tn21

2

pn21
2

Bv
(1)~n21!J dqv~ tn21!.

~A30!

Here the quantityBv
(1)(n) is given by recursion according t

the following continuous fraction,
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Bv
(1)~n!5

2mg

pn coswn
S kn

m2g
pn

22sinanD 1

12
m2g2tn21

2

pn21
2

tn21

pn21
2 1pn

22m2g2tn21
2

2pn
2

2
1

2m2g2tn21

pn21
2

2S 12
m2g2tn21

2

pn21
2 D Bv

(1)~n21!

.

~A31!

Since the Lyapunov exponentl is the average rate of exponential separation between trajectories issued from arb
close initial conditions, one can finally obtain the formula~4! for the Lyapunov exponents of the particle bouncing on the fl
in a constant vertical external field.
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