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Diffusion of particles bouncing on a one-dimensional periodically corrugated floor

Takahisa Harayama
ATR Adaptive Communications Research Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

Pierre Gaspard
Center for Nonlinear Phenomena and Complex Systems, Univeibite de Bruxelles, Campus Plaine, Code Postal 231,
Boulevard du Triomphe, B-1050 Brussels, Belgium
(Received 1 March 2001; published 28 August 2001

We report on a class of spatially extended mechanical systems sustaining a transport process of diffusive
type. These systems consist of a point particle subject to a constant vertical acceleration and bouncing on a
one-dimensional periodically corrugated floor. We show that the deterministic dynamics of these systems is
chaotic with small elliptic islands for many parameter values. The motion of particles perturbed by a small
noise has a horizontal diffusion that is normal. In such a case, we show that the diffusion coefficient oscillates
periodically as the energy of particles increases. In the absence of noise, there still exists an effective numerical
value for the diffusion coefficient and this value has an irregular dependence on energy.
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I. INTRODUCTION Rechester and White have shown that a system, such as the

In recent years, dynamical chaos has been at the center sfandard map, which is not fully chaotic can have normal
the preoccupations in our understanding of transport propediffusions when perturbed by small noidd€)]. The resulting
ties in nonequilibrium statistical mechanics. The compatibil-diffusion coefficient is largely independent of the amplitude
ity of the phenomenological time-irreversible diffusion equa-of a weak noise so that the diffusion is essentially induced by
tion with those of time-reversible Hamiltonian dynamics thatthe chaotic dynamics of the system without noise. Moreover,
shows hyperbolicity has been much discussed. BunimoviclRechester and White have shown that the effective diffusion
and Sinai have proved that the motion of a particle in thecoefficient of the standard map presents an oscillatory depen-
periodic Lorentz gas with a finite horizon follows a Brown- dence on the systefi0]. It turns out that an effective diffu-
ian motion in a certain scaling limjiL]. Gaspard and Nicolis sion coefficient can still be numerically obtained for many
have derived an escape-rate formula that connects the diffparameter values in nonhyperbolic chaotic systems.
sion coefficients with the chaotic dynamical propertig On the other hand, our investigations will show that, even
Morever, the Pollicott-Ruelle resonances were proved to apf the parameter values where elliptic islands exist could be
proach to the eigenvalues of the phenomenological diffusiomense, the measure of the parameter values for which no
equation in the case of the multibaker mapp[i® More elliptic island exists may still be positive in our systems.
recently, the hydrodynamic modes of diffusion associateddccordingly, we may wonder if the transport properties in
with these Pollicott-Ruelle resonances have been shown teonhyperbolic systems could not be reminiscent in many re-
display a fractal structure in the cases of the multibaker mapspects to the ones in hyperbolic systems.
ping and two hyperbolic Lorentz gasg4,5]. Besides, the The purpose of this article is to investigate this problem
transport coefficients and the reaction rates can have an iby considering diffusive transport in mechanical systems
regular fractal-like dependence on the control parameters afuch as billiards in an external field. The systems we con-
the system. This result has been established by Klages arsider are composed of a patrticle flying in a vertical constant
Dorfman for the case of one-dimensional piecewise-lineaelectric or gravitational field and bouncing elastically on a
mappings[6-9]. These works show that the deterministic periodically corrugated wall that extends horizontally.
chaotic dynamics induces irregular fractal-like structures that The class of billiard systems we introduce here differs
were previously unexpected among the transport propertie§tom conventional billiards on the plane, especially, in that

Transport by diffusion has also been studied in nonhyperthe dynamical properties have a nontrivial dependence on
bolic chaotic dynamical systems. Systems that are area prenergy. In particular, we show that the diffusion coefficient
serving are known to present complicated phase portraiteas an oscillatory dependence on energy, which is reminis-
with regular motion in the form of elliptic islands coexisting cent of the behavior observed in the standard map by Re-
with chaotic one. A famous example is the standard map thathester and White.
has been studied as a paradigm of diffusive transport in Besides, we show that these systems are not fully chaotic
Hamiltonian systems with two degrees of freedom. Thesdecause there exist many parameter values for which very
studies have shown that elliptic islands generate anomalowsnall elliptic islands corresponding to regular motion coexist
diffusion with long-time tail effects, preventing the existencein the phase space with chaotic motion. However, these very
of a positive and finite diffusion coefficient. Therefore, a small elliptic islands are easily destroyed by a weak noise. In
normal diffusion cannot be expected in the presence of ellipthis case, the chaotic motion and the weak noise induces a
tic islands. normal diffusion of the particles. This diffusion is normal in

However, small elliptic islands corresponding to regularthe sense that the horizontal displacement of the particle has
motions can be easily destroyed by small noises. In this wayasymptotically a Gaussian distribution at long times. More-
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over, we observe that the diffusion coefficient in presence of 1 - T - T - T
a weak noise has a value that is very close to the effective
diffusion coefficient computed numerically in absence of
noise. Switching off the noise reveals an irregular—but
reproducible—dependence of the effective diffusion coeffi->
cient on the energy. This phenomenon has similarities with
the fractal-like behavior of the diffusion coefficient, as re-
ported for one-dimensional mappings by Klages and Dorf- 0 ' '1 ' é ' é . 4
man[6].

This paper is composed of ten sections. In Sec. I, we FIG. 1. The spatially extended billiard composed of a point
introduce the mechanical systems of the billiard with a ver- .

ical | : he li bili vsis is d particle moving in a downward vertical field and bouncing on a
tlca_‘ con;tant acce erathn. The 'ne"f‘r stability analysis Is _eberiodically corrugated floor. The floor is made of arcs of parabolas
scribed in Sec. lll, and it plays an important role to obtain

) ; intersecting at right angler &1/2). In our casem=1 andg=15.
the phase diagram as shown in Sec. IV.

In Sec. V, we show that a diffusive type of transport exists  If the energy is very small, the point particle is confined in
in the system. The calculation of the diffusion coefficient isone of the holes in the floor. The dynamical properties of the
expressed in terms of the velocity autocorrelation functionpoint particle in such holes is reminiscent of the “wedge
The autocorrelation function decay algebraically in the redbilliards” that consist of two flat walls intersecting with each
gion of energy where elliptic periodic orbits exist. In the Other at the bottom and that have been studied in detail both
energy ranges where no islands can be detected numericaljumerically and analytically11,12. _ _ _
the diffusion coefficient is shown to be an irregular function  'f the energy is high enough, the point particle can jump
of energy over the top of each tile and wander on the floor by bouncing

In Sec. VI, we discuss the case that the system is pePaCk and forth.

; : . In general, we can reduce the continuous time flow of our
Furbed by a wegk noise, the decay of the qorre_lathn functio ystem to a two-dimensional mapping called the Poincare
is of exponential type and, hence, the diffusion is norma

b th I island dest d by th K noi Birkhoff mapping that rules the time evolution from collision
ecause the small ISlands are destroyed by In€ Weak NOISgy g jision. This mapping is area preserving in the so-called

The oscillatory dependence of the diffusion coefficient ong;.hoff coordinatesz= (s,v), which are the arc of perim-
energy is shown. L , eters and the component of velocity that is tangent to the

. !n the case of the |nf|n|te.rad|us of the_curv_ature of thewa”' both taken at the point of impact reported to the fun-
billiard wall, we show the existence of an invariant Cantor-qamental tile of the lattice. With such a Poinc&@iekhoff

like subset of chaotic motion in Sec. VII. _ construction, the flow can be shown to be completely equiva-
In Sec. VIII, we introduce a different billiard with a saw- |ent to the iteratiorf13,14:

toothlike floor in order to elucidate the unique behavior of
the oscillatory dependence of the diffusion coefficient evi- Zn+1=H(zy),
denced in Sec. VI, as well as the irregular behavior of the

diffusion coefficient described in Sec. V. the1 =t 7(Z0), ®
Summary and conclusions are drawn in Sec. IX, where lhr1=1n+a(z,),
we also discuss the possible experimental application of the ]
results of Sec. VI. where the first equation gives the Poine&igkhoff mapping
itself, and where the second equation gives the successive
Il THE BILLIARD WITH A VERTICAL CONSTANT times{t,} of collision if 7(2) is the time of flight between
ACCELERATION two successive collisions. In the third equation of ES),

a(z) is an integer depending on the previous collision and
The class of billiards we consider are composed of a poingiving the signed number of tiles the particle has jumped
particle of massn moving in a constant vertical acceleration over during its flight.a(z) is positive (negative if the par-

g so that its Hamiltonian is ticle jumps to the rightleft). The collisional dynamics of the
1 1 particle can thus be expressed as the successive iterations of
=~ p2y —p2 this PoincareBirkhoff mapping.
H=opi+ 5—pj+may. (1)

IIl. LOCAL LYAPUNOV EXPONENTS
wherex andy denote the horizontal and vertical coordinates
of position, respectively, whilg, andp, are the correspond-
ing momenta. The point particle undergoes elastic collision
on the floor. The shape of the floor is given by the function

The vertical components of position and momentum of
dhe particle are convenient to study billiards in a vertical
external field, instead of the components perpendicular to the
orbit as commonly used in the case of plane billiards, be-
y=h(x)=h(x+1), (2 cause the vertical acceleration breaks the isotropy of the mo-

tion. In these vertical components, the mapping can be lin-

which is periodic in the horizontal directiorn and has a earized and written as a matrix. The dynamical instability
piecewise-continuous second derivative. Therefore, the floatan be characterized by the Lyapunov exponent that is the
consists of copies of a fundamental tile, as shown in Fig. 1rate of exponential separation between trajectories issued
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from arbitrarily close initial conditions. We can show that thewhere Ty==)_,7,_, is the sum of the times of flight,

Lyapunov exponenk is given by =7(z,) betweenN successive collisions, angf/2m is the
N 2,22 kinetic energy of a particle at theth collision (see Appen-
A= lim i z Inll 1— M9 71 dix). The quantityBﬁ”(n) is related to the curvature of an
N TN A=1 pﬁ,l expanding wave front of trajectories accompanying the par-
ticle and evaluated just after thrh collision. This quantity
2 2_ 2022 o X . . .
Pr-1tPr—M°Q 7, () is given by recursion according to the following continuous
RLES 2 B,"(n=Dl. ¥ fraction
anfl '
1— m2927'§71
2m K pz_
B{")(n)= Ml N el pa—sina, |+ 5 5 5 i :
PnCOSPn | m?2 PA_,+pi—mig?ri_, 1
n-1 2 22 2422
2p 2meg T, meg-rh_4
n . n _ _ . n B£+)(n_l)
Pr-1 Pn-1
5
x
wherek, is the curvature of the flook, denotes the angle In Eq. (6), it turns out that, if the energy is very small, the

between the outer normal to the floor and the horizontal linecurvature contribution£,/m?g)p? is less than the contribu-
and ¢, is the angle between the normal and the outgoingion sinea, due to the slope of the floor. Both contributions

velocity, all these quantities being evaluated atritiecolli-  cancel out each other precisely at an energy equal to the

sion point. threshold E,=mgr/2, where the point particle launched
In the following, we consider that the floor is made of from the intersection between two parabolas flies to the next

parabolic tiles intersection by creeping the parabolic floor. The curvature

contribution becomes larger than the slope contribution
1 1 1 above the threshold enerdy,,. Indeed, the system has a
y=——(x—1)?2 for |- =<x<I+=, (6)  nearly fully chaotic dynamics above this threshold due to the
2 2 2 defocusing character of the collisions on the floor, and all the
stability islands are much smaller than the size of the
Eirkhoﬁ phase space as shown in Fig. 2.
In Fig. 6, we depict by a dotted line, the average value of
e Lyapunov exponent of our system. We observe that, on

wherel| is an integer. Moreover, the successive parabola
intersect with each other at right angle of 90°, as shown iqh
Fig. 1. This condition imposes that=1/2. We choosey

=0 as the top of the parabola. Therefore, the particle is 6
trapped in one of the intervals|x—I—1/2<(1/2)
—J—2Er/mgif its energy is negative, although the particle 4
is no longer trapped if its energy is positive.

If the energy of the particle is negative and so small that 2
the curvature in the vicinity of the intersection is almost
negligible, its dynamics is completely chaotic because the )
system can then be very well approximated by a wedge bil-
liard that is fully chaotic as proven in the case where the 2
angle of the wedge is larger than 90P1,12. However, in
this case, the particle is confined in a hole near the intersec- 4
tion of two successive parabolas. As energy increases, the
curvature of the floor starts to play a very important role. .

-04 -02 O 02 04 06
S

If the total energy is positive, the particle can jump over 0.6
the parabolas and wander in an unbounded diffusive motion.
An important threshold occurs at the critical enerBy,
=mgr/2. At this threshold, the point particle launched from  FIG. 2. Phase portraits of the billiard in the space of Birkhoff
the intersection between two parabolas flies to the next intelcoordinates §,v) corresponding to one parabolic tile at the energy
section by creeping the parabolic floor. E=14.2. The chaotic sea covers most of phase space.
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average, the Lyapunov exponent is positive, showing that our 4.190

system is indeed chaotic. The observed dependence on en-

ergy can be understood by supposing that the instability is 4188 |

caused by the defocusing character of the collisions on the

corrugations of the floor. Since the trajectory is parabolic 4136 | m
between the collisions, we can estimate the perturbation on -

the horizontal positiorx, , ; at the (i+1)th collision that is

caused by a perturbation on the angjebetween the veloc- B84

ity and the horizontal axis at theth collision. At high ener-

gies, most of the jumps reach a height that is larger than the 4.182

corrugations of the floor so thaan+1:xn+(v§/g)sin(20n)

because the trajectory is a parabola. Accordingly, the pertur- 4.180 : : .
bation on the next horizontal position is of the order of 001 -0.005 0 0.005 001
oXn,+1~(E/ImQ@) 66,,. The perturbation on the next angle is S

66,1~ 6X,11/r because the radius of curvature of the floor
IS appIrOX|mat'e.Iy equal M.)' Hence, the perturbation on the coordinates §,v) where we observe the elliptic island at the same
angle is amplified according 6, 1~ (E/mgr) 66, at each enerav as in Fia. 2
collision, so that the average Lyapunov exponent of the map 9y g4
is estimated askmay~In(86,+1/66h)~IN(E/mgn). On the  yinn petween two parabolaéie have here taken the value
other hand, the average vertical and horizontal veIOC|t|e§:1/2) Since the floor is periodic a similar behavior hap-

; 2 2 ’
scale like \/(Ux>”\/<_vy>”\/E/m-2 Therefore, the average pens if the maximum jump reaches a similar point, which
time of flight scales likg 7)~ \(vy)/g~VE/m@’. Since the  occurs at the energie§, = (1 —1/2)mg/2 with 1=1,2,3...
average Lyapunov exponent of the flow is equal to the averHence, similar structures appear repetitively over the period
age Lyapunov exponent of the map divided by the averaga E=mg/2.
time of flight, \=\,,,/(7), we infer that the Lyapunov ex-  On the line ofr=0.5, all the islands are much smaller
ponent decreases as~(gym/E)In(E/mgr) in the limit E  than the whole energy surface at the energies above the
— in agreement with the behavior observed in Fig. 6. thresholdEy,.

FIG. 3. Enlargement of the small region of the space of Birkhoff

IV. PHASE DIAGRAM V. DIFFUSIVE TRANSPORT IN ABSENCE OF NOISE

We have also studied the local behavior of the Lyapunov The diffusion coefficient is defined by Einstein’s formula,
exponent in order to investigate the nonhyperbolicity of our
system. When the initial point is in an elliptic island, the
local Lyapunov exponent of the orbit is vanishing. On the
other hand, we observed that the local Lyapunov exponent of

an orbit of the chaotic sea is positive and larger than ongyhere the averagé:) is carried out over a statistical en-
Accordingly, the existence of elliptic islands can be numeri-semble of initial conditions that could be distributed uni-
cally investigated with the local Lyapunov exponent. formly in the Birkhoff phase space. The diffusion coefficient

Taking into consideration the symmetry of the phasecan be expressed by a Green-Kubo formula in terms of the
space of the Birkhoff coordinate, we have taken 1000 00Gterative dynamics given by Eqf3) as

initial points distributed over a quarter of the phase space.
Using the local Lyapunov exponents, we have been able to 2 g
find very small elliptic islands that cannot be detected other- "
wise in a phase portrait. For example, the orbit in Fig. 2 is
chaotic, and no elliptic island seems to exist in the phase
portrait. However, the method of the local Lyapunov expo-
nents detects the tiny elliptic islands shown in Fig. 3.

In the phase diagram of Fig. 4, each black square denotes =1
a parameter value where at least one elliptic island is de-
tected by the aforementioned method. One can recognize
structures that are reminiscent of the Arnold tongues. The
white regions of the phase diagram of Fig. 4 may correspond
either to systems with undetected extremely small elliptic 01
islands, or to fully chaotic systems.

In Fig. 4, one can see a periodic structure of energies,
which can be understood as follows. As energy increases the
maximum jump also increases. When the total endfgyf FIG. 4. Phase diagram in the case of the floor made of parabolic
the particle is in the range ¢{I —1/2)mg/2,(1+ 1/2)mg/2],  tiles. The black squares denote the existence of elliptic periodic
the particle can jump ovartiles if it starts from an intersec- orbits.

1
D= Iimz<[x(t)—x(0)]2>, (7)
t—oo
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FIG. 5. The jump autocorrelation function at the 12th collision
vs energy. The peaks appear at the energies where elliptic periodic FIG. 6. Diffusion coefficienD (solid line) and Lyapunov expo-

orbits without horizontal particle transport exist. nent\ (dashed lingvs energyE (above the threshold enerds,
=mgr/2=mg/4=3.75). The diffusion coefficient oscillates with
1 I the periodAE=mg/2=7.5. Inset: Zoom on the beginning of the
D=—— 2 (a(z)a(f"z)), (8) curve of the diffusion coefficient, showing the irregularity of this
2(71) n = curve on smaller scales.

where the average ) is carried out over the uniform prob- has its origin in the fact that the topology of the trajectories
ability distribution in the Birkhoff phase spadd3]. The changes with energy, i.e., the system is not structurally
Green-Kubo formula relates the autocorrelation functionstaple.

with the diffusion coefficient. We emphasize that H@) In order to understand in more detail this strange behavior
gives the diffusion coefficient of the continuous-time dynam-we have considered the energy dependence of each of the
ics. The autocorrelation function is defined by autocorrelation coefficient€,(E) =(a(z)a(f"z)) in the se-
ries of Eq.(8). Each one of these coefficients has a smooth
C.(E)=(a(2)a(f"z)), (99  dependence on energy but the sum of them turns out to be
irregular. The autocorrelation coefficier@s(E) are numeri-
wheren is the number of collisions. cally observed to decay exponentially with the numbeaf

If this autocorrelation function would decay algebraically collisions, as seen in Fig(&. Consequently, we would infer
because of a sticking to an elliptic island, we cannot expect ¢hat the serie$8) converges to a finite diffusion coefficient.
finite diffusion coefficient. Such algebraic decays of the au-On the other hand, the autocorrelation coefficieG{gE)
tocorrelation funcion occur in the presence of elliptic islands oscillate with the energ§ more and more rapidly as in-
which represents many parameter values as seen in the phageases because the sensitivity to initial conditions generates
diagram of Fig. 4. Especially, the elliptic islands centered ora sensitive dependence on the control paranteterdeed, in
a localized periodic orbit that do not transport particles in theeach derivative d/dE)C,,(E), we find products of the type
horizontal direction strongly affect the autocorrelation func-11_% ., (9f/9z) (f*2) - (6f/ JE)(f"z) with m=0,...n—2.
tion, as shown in Fig. 5. One can see that the autocorrelatioBuch products grow exponentially in a way controlled by the
function has peaks corresponding to values of the energyyapunov exponents of the mdpAccordingly, we can ex-
where the aforementioned periodic orbits exist. In such @ect that the derivativesC,(E)/dE do not decay with the
case, we cannot expect that the diffusion coefficient is finitthumber of collisions. We have confirmed this expectation by
because the autocorrelation function does not decay to zera.numerical evaluation of these derivatives that indeed do not

However, the phase diagram also shows the possibilitdecay asn—« [see Fig. T)].
that no elliptic island exists in certain energy ranges that are These properties are reminiscent of those of the Weier-
the blank region in Fig. 4. In the absence of elliptic island,strass function
we would expect that an effective diffusion coefficient exists

and is finite. This diffusion coefficient has been calculated i
numerically and is depicted in Fig. 6 as a function of energy. W(E)= 2 a" sin(B"E), (10)
In Fig. 6, we observe a rich structure depending on the en- n=0

ergy scale. This structure is numerically reproducible and is
not due to statistical fluctuations in the numerical calculationwhich is known to be nowhere differentiable provided that
The curve of the diffusion coefficient has a very irregular0O<a<1, B>1, andaS=1 [15]. For the Weierstrass func-
fine structure. The inset of Fig. 6 depicts a zoom on the curvé&ion, the terms decay exponentially in the ser{@§) al-
showing the persistence of fine structures on smaller energjpough they grow in the series defining the derivative
scales. This apparent self-similar behavior has also been oldW/dE. A very similar behavior is here observed for the
served in a piecewise-linear one-dimensional mappings agiffusion coefficient of our system. Therefore, we think that
the diffusion coefficient varies with the slop@—9]. Here, a  the series,_,dC,(E)/dE do not converge so that the dif-
very analogous behavior is observed in a mechanical systefasion coefficient(8) is a nondifferentiable function of en-
as the energy of the particle is varied. This complex behavioergy in analogy with the Weierstrass function.
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+ FIG. 8. The heights of the peaks of the autocorrelation function
@ around the energy equal to 10, as a function of the noise amplitude
Q 2 . } €. The peaks decrease as the intensityf noise increases.
S T s f T
0 ¥ . . . .
% = * o3 H In Eqg. (11), %, is a random number uniformly distributed in
} [—€1,€e,], where
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n
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FIG. 7. (a) Decay of the autocorrelation coefficie@,(E)
=(a(z)a(f"z)) vs n, at the energfE=5. The main figure depicts
|C.| vs nwith a vertical logarithmic scale while the inset depiCts €= min{ T €. 7— a] (13)
vsn in order to show its oscillationgb) DerivativesdC,(E)/dE vs 2

n at the same energy.
' . ~a being the angle between the postcollision velocity and the

The result of this section clearly shows that the effectiveunit vector tangent to the floor at the point of collision.
diffusion coefficient has an irregular dependence on the en- This weak noise has the effect that the peaks of the auto-
ergy of the particle. This phenomenon is reminiscent of aorrelation function due to the elliptic islands decrease as the
similar behavior observed in piecewise-linear m@fs9].  intensity of the noise increases. These peaks almost vanish at
However, we should notice that these piecewise-linear mapsoise intensities larger than 0.08, as shown in Fig. 8.
are strictly hyperbolic, while the present system is not. \we also notice that the peaks of the autocorrelation func-
Therefore, part of the irregularity could be attributed to thetions decrease faster at the energy around 14 than that at the
fact that the energy values at which elliptic islands exist fornknergy around 10 as shown in F|g 9. Therefore, we conclude
a setin the phase diagram that is like a dense set. In this casfat the higher the energy of a particle, the faster the peaks of
the structural instability of the topology of trajectories would gytocorrelation function decrease.

be more important compared to the case of expanding Figure 10 depicts the autocorrelation function of the sys-

piecewise-linear maps with a varying slope.

tem perturbed by a weak noise at the intengitgqual to

VI. DIFFUSION IN THE PRESENCE OF NOISE 0.035 T T T T T
The small elliptic islands are easily destroyed by the per- 0.03 4
turbation of a weak noise. Indeed, we have introduced a 0.025

weak noise in our system by changing at random the direc-
tion of the velocity just after an elastic collision. This noise is
weak in the sense that the velocity angle is randomly per-
turbed by small angles less thanew/2. Therefore, the en-
ergy of the particle does not change. With such noises, the
iterative dynamics is modified as

Zy11=F(zq;70),

0.02
0.015
0.01
0.005

0

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

S

Uns1=COS70 4 1+ SN 70\ 2E/M—29Yn s 1= 0, 2, FIG. 9. The heights of the peaks of the autocorrelation function
(13) around the energy equal to 14, as a function of the noise amplitude
, e. We observe that the heights decreases faster than for an energy
(Xn+1,Un41) =F(24). equal to 10.
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FIG. 10. The autocorrelation function with small noises of am-

plitude e=0.08 at the energfe=10. The autocorrelation decays
very fast like an exponential as the collision timéncreases.

FIG. 11. Diffusion coefficienD vs energyE in the presence of
a weak noise. We observe that the diffusion coefficient oscillates
with the periodAE=mg/2=7.5.

0.08. One can see that the autocorrelation function rapidly . o o )
decays in an exponential-like behavior, in the presence of a V{(vx)(7). Since the diffusion coefficient is roughly equal
weak noise. to the square of the mean free flight divided by the intercol-
Since the size of the elliptic islands is always muchlisional time, we infer thaD~L2/<r>~_g‘1(E/m)3’2, which
smaller than the size of the phase space in the present S)gxplams the gross increase of the diffusion coefficient with
tem, the orbits can escape from the elliptic islands under th€N€ray- o o o _
effect of a weak noise. Indeed, we have observed that the Besides, the oscillations of the diffusion coefficient with
autocorrelation function decays exponentially already foreN€rgy can be understood in the same way of the periodic
weak noises. Accordingly, normal diffusion and a finite dif- Structure seen in the phase diagram of Fig. 4. Accordingly,
fusion coefficient can be expected already for such wealhe diffusion coefficient oscillates with energy with the pe-
When the system is perturbed by small noises, the diffu-
sion coefficient is also given by E7) but where the aver-
age(-) is now carried out over both a uniform probability VII. ESTIMATION OF THE DIFFUSION IN THE CASE OF
distribution in the Birkhoff phase space and over the noise. INFINITE RADIUS OF THE CURVATURE
This diffusion coefficient has been calculated numerically When the radius of curvature of the floor is infinitely

and is depicted in Fig. 11 as a function of energy. The deTarge, we will show that there exists an invariant subset of

pendgnce on energy IS very similar to _the_one in the absen%?ajectories, which has a fully chaotic dynamics. The method
of noise seen in Fig. 6. However, the fine irregular structure e use is inspired by the work of IHen[17]

are now smoothened as expected. Nevertheless, there re-
mains an oscillatory dependence on energy superimposed on
an increase of the diffusion coefficient with energy.

This gross increase of the diffusion coefficient with en-  The horizontal positiorx; and the velocity ; tangent to
ergy can be explained by considering a random-walk modethe floor after one flight between collisions are obtained by
as in Ref[16]. In such a random walk, the mean free flight solving the Hamilton equation. Hence, one can express them
can be estimated as the mean intercollision time multipliecexplicitly by the initial horizontal positiorx, and the initial
by the average horizontal velocity of the particle:  horizontal and vertical velocitiesi, anduy,

A. Derivation of a piecewise-linear mapping

g 1 Xo Uyo Cg \/ Xo Uy C 2(cp—Cy) CotCy
—_—— — - |+ J— [ — P — —
u2 r) |:( i + Uso r ) - r + Uso r + > ] Uxouy0+g X0 2 , (14)

uxO

and

1 —172 ——
U=[1+r_2(X1_C1)2} [UXO_F(Xl_Cl)(UVO_g 1Uxo )] (15

036215-7



TAKAHISA HARAYAMA AND PIERRE GASPARD PHYSICAL REVIEW E 64 036215

Herecy andc, denote the integers equal to the centers of thelhus, we finally obtain the following symplectic mapping:
tiles where the particle starts and arrives, respectively.
We assume that the radius of the curvature at the top of Xj+1= (X;—¢j) coshg+w; sinh¢ +c; (26)
the tile is infinitely large, and the particle starts in almost
vertical directions. Therefore, we can neglect the terms of thé?lnd
order ofr ! and obtain
Wj 1= (X;—Cj) sinhg+w; coshq§+(cj—cj+1)tanh§,
2UyoUyg

X1=Xpt g (16) (27)

wherej denotes the number of collisions. Note that the di-

and mension ofw is the same as.
u
U1=Uyt+ Tyo(xl— C1). a7 B. Construction of a chaotic subset
We show that there exist orbits for which the horizontal
By the same approximation, we have momentum always remains small during the whole time evo-
lution.
u Substitutingx; andw; by recursion, one can obtain
yo0 g y )
Uozuxo_T(Xo_Co)- (18 ! !

xj—cj=(x0—c0)coshj¢+w0 sinhj ¢
Substituting Eq(18) into Eq. (16) yields j
202, " + 2 Siha Smh¢ i e{sinij—k+1)¢
X1 =Xot —= % (xo— Co)+ Vo- (19
g —sinh(j — k) ¢}, (28)
From Egs.(17) and(18), we get and

J
va=vot _{(XO Co) + (X o)} 20 = (Xo— Co)sinhj ¢p+wq coshj p+ >, —— ! (Ck—1—Cy)
k=1 Ssinh¢

We have assumed that the horizontal velocity and the

j—k+ - j— .
height of the tile is extremely small so that we obtain xicoshj —k+1)¢ - costj —k) ¢} 29

Accordingly, the sum of the above terms yields

2E
Uyoz F (21) - 28¢
(Xj—Ccj+wj)e 1?=xy—Cco+ W+ ;
From Egs.(19), (20), and(21), we get e+1
j
4E 2 [2E 2 (Cpoq1— e ko (30)
Xl_XO+ m_gr_(XO_Co)+§ Hvo, (22) k=
and The horizontal distance and the velocity of one flight has a
maximum because the enerByis finite. Therefore, the term
1 2E (xj—c;+w;) does not increase exponentially as the number
v1=vo+ =\ —{(Xo—Co) +(X;—C1)}. (23)  of collision times increases without bound. Hence the left-
rym hand side of Eq(30) should vanish aggoes to infinity, and
Note that this mapping is area preserving because the adl® obtain

sumption of the infinite radius of curvature makes the hori- eb_1
zontal momentum conjugate to the horizontal position. Xo+Wp=— Co+22 ce ke ) (31)
Following Henon and for simplicity{17], we change the e?+1

scale of the velocity to w, _
In the same way, we also obtain

g 4E ||t
W= 5(24— m—gr) v, (24) ed’—l

XO_WO:—
e?+1

-1
Cot2 >, ckek‘f’). (32)
k=—o
and define a new parameter
From Egs.(31) and(32), the initial position and momentum

are expressed by the integers corresponding to the centers of

et 1 E
¢=cosh | 1+ or)- @9 e tiles,

mgr
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ev—1 o 0.5 >
Xo= Cot E (ctc_pe ¢, (33 .&\3‘&@%
e+1 k=1 N
2. ¥ o
and 8.6 .09
.0 %.$
ed-1[ & %, ¥ % ¢ o
_& - —c e kol 4 20 [ ee eoe o8
Mo et [ ;Z‘l (G=e-we ] (34 %% o %* R “s®
Therefore, we also have .&%@ﬁﬁ’ Q‘-@-@-&?
® o @
@8
- —ke
Xj— P Cj'f'z (Cj+k+Cj_k)e s (35) -0.5 &
ef+1l " k=t 05 0 05
and X
b1 (2 FIG. 12. The chaotic invariant subset in the case where the floor
Wi=— E (c»+k—C»_k)ek¢]. (36) has an infinitely small curvature. In this cage=15\(5—1)/12m
Nedrr (3! ! =19=15r=2. The maximum jump is equal to 1.

We derived the piecewise-linear mappit$) and(27) by

Note that the conditiorti42) automatically contains the con-

assuming that the particle always bounces almost verticallyyiion (39).

and hence the piecewise-linear mapping does not describe ¢ iq energy of the particle satisfies E42), the dynam-

the orbits for which the momentum becomes large during the.< on, the invariant subset can be described by a symbolic
time evolution. Accordingly, we focus on those orbits thatdynamics made of the infinite symbols. .. ,—2,—1,0,
jump| tiles at most. Thus, we obtain an invariant subset tha&,z’ ...}. An example of the invariant subset considered in
is infinitely extended in position, but finite in momentum. i« saction is depicted in Fig. 12.

The dynamics on this invariant subset is always hyperbolic

because the Lyapunov exponent of the map is equab.to

This invariant subset is thus composed of unstable orbits.

From Eq.(27), the previous assumption yields

1 1
—(§+I)<(xj—cj)coshz$+wjsinhgbs §+I , (37)
which leads to
e?=1+4l. (39

The horizontal positiorx; should always exist in the tile
of the numberc;,

1 1
_§<Xj_cj<§- (39)
On the other hand, from E@35), we have
e?—1| <
o C=— R . —c.)le ke
Xj—Cj b1 gl{(CJJrk CJ)+(CJ—k CJ)}e .
(40)

Since the maximum jump i we obtain from Eq(40) that

e‘/’—1[

qS_ o0
e’—1
- [2I2 ke‘k¢]sxj—cjs

20> ke‘k¢].

e?+1| k=1 e?+1| k=1
(41)
From Egs.(39) and(41), we finally obtain
e?>21+ 412 +1. (42)

C. Estimation of the diffusion coefficient

The mean square of the displacement of a flight over the
invariant subset grows linearly to the increase of time. Ac-
cordingly, we can obtain an estimation of the diffusion coef-
ficient of the system based on the dynamics restricted to this
invariant subset.

The diffusion coefficienD can be evaluated by a statisti-
cal average over the invariant subset. Using([B§), one can
obtain

1 2 e
(x=x0)%)=31(1+1) t+mte (t=1)¢
4(e*+e?+1) ~
+me¢(e I—.‘].) , (43

so that an approximate value of the diffusion coefficient is
given by

1
D=gl(+1). (44)

It is important that the timer of one flight is constant
because we assumed that the orbit of the particle is almost
always vertical, and hence we have

(45)
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The minimum energy for the complete symbolic dynamics 04 ' ' ' ' ' ' ' ]

with maximum jumpl is given by replacing the inequality of 02
EqQ. (42) to an equality, >~ 0
-0.2
4 4 4 04T
2 = — — —
21+ Jalc+1=1+ mgrE+ mgrE<2+mgrE)'
(46) X

FIG. 13. The spatially extended billiard composed of a point
particle moving in a downward vertical field and bouncing on a
5E 5E sawtooth-shaped floor. The angle of the edges$32 In our case,

= \/— 1+ — (47) m=1 andg=15.
mgr mgr/’

and thus we obtain

) Note that the Hausdorff dimension is less than 2 because of
Therefore, from Eqgs(44), (45), and (47), we can estimate Eq. (42).

the energy dependence of diffusion coefficients from below | this section, we have studied the dynamics of our cha-
as the energy becomes large, otic billiard in an external field in the limit where the curva-
ture of the floor is arbitrarily small. By deriving a piecewise-

D 1 E\%2 48 linear mapping, we have shown that there exists a hyperbolic
~3\/§gr2 m/ (48) invariant subset of orbits for which the particle always
bounces almost vertically during its time evolution.
Note that this estimation is consistent with our previous re-
sult derived by the consideration of a random walk in the last VIIl. SAWTOOTH FLOOR
section. o ) ) )
In the same way, one can obtain the velocity autocorrela- It is important to investigate other shapes of the floor in
tion function order to clarify the parameter dependence of the diffusion
coefficient. In this section, we consider a floor made of tri-
C(H)=((Xt+1=X) (X1 =X0)) angle tiles,
1 e?—1\? e??+1 1 1 1
=—1(1+1)| ——| [ |t|+ e ll?, (49 = |x— ——<x<l+=
zl(1+1) e¢+1)(|| o (49) y=—ogIx=Il for I-S<x<l+3, (54)
which allows us to confirm the valu@t4) of the diffusion  wherel is an integer. Moreover, the successive triangles in-
coefficient by using the Green-Kubo formula, tersect with each other at the angle of 120°, as shown in Fig.
13.
C(0) < i ition i - , —
D ( +3 c). (50) This condmoq imposes th&= /3/2. We c_hoos@r 0 as _
2 “= the top of the triangle. Therefore, the particle is trapped in

one of the intervalgx—|—1/2<(1/2+2ER/mg) if its en-
ergy is negative, although the particle is no longer trapped if
its energy is positive.

Thanks to the invariant subset, we can also obtain a lower When the energy of the particle is negative, its dynamics

D. Lower bound on the topological entropy

bound on the topological pressure functidr8,18 as is completely chaotic because the system is precisely the
same as a wedge billiard that is fully chaotic as proven in the
P(B)=In(2I+1)—B¢. (51)  case where the angle of the wedge is larger than[2012.

o . _ The Lyapunov exponent of the wedge billiards takes its
The pressure function is known to give the topological en-maximum value when the angle of the intersection of the flat
tropy at=0. Accordingly, we obtain a lower bound on the \alls is 120°[11]. However, in these cases, the particle is

topological entropy of the system as confined in a hole near the intersection of two successive
triangles.
higp=P(0)=In(2+1). (52 If the total energy is positive, the particle can jump over

) i the triangles and wander in an unbounded diffusive motion.
Moreover, we can obtain the value of the Hausdorff dimen-gyen for positive energies, elliptic periodic orbits and quasi-

sion of the invariant subset of orbits considered in this seCperiodic orbits cannot be detected on a typical phase portrait.
tion. Indeed, the partial Hausdorff dimension in the stable ofjowever, very small elliptic islands are detected by the
unstable directions is known to be given by the zero of thanethods of the local Lyapunov exponents explained in Sec.
pressure function aB(dy) =0, so that we get lll, as shown in the phase diagram of Fig. 14. One can see
the same periodic structure of the phase diagram with the
(53) period AE=mg/2 as in the case of the floor made of para-

In(21+1)
' bolic tiles.

Dy=2dy=2
H H b
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0 0.8
2 ¢ . o 04
- . . o 0 '?l'l'
Q): * ) ) <:> 0 20
— 6 * o L n
= REY
-10 t (a) * T
0 5 10 15 20
n
0.3
L]
0.2 ’
0.1 ¢
. . % o« 4 ‘ Yy
FIG. 14. Phase diagram in the case of the sawtooth floor. The < 0 b e ]
black squares denote the existence of elliptic periodic orbits. We Q}J-m of ’ P
have that =2//3R. = .
02 ¢ ‘
. e - . . (b) ¢
The effective diffusion coefficient without noise is de- 0.3
picted in Fig. 15. The diffusion can be expected to be normal 0 5 10 15 20
in those ranges of energies without elliptic island, i.e., where n

the f?la_lcktsqduarest do r_llcl)ttap_pear |n"F|g. 14. Thg d'ﬁgsé‘?” FIG. 16. (a) Decay of the autocorrelation coefficie@,(E)
coetlicients do not osciliale in a wed-pronounced pero IC=(a(z)a(f "z)) vs n, at the energyfE=3. The main figure depicts
manner as in the case of the parabolic tiles.

) . . - |C,| vsnwith a vertical logarithmic scale while the inset depiCts

For the SaW,tOOt,h floor, the effective dlfoS|or_1 Coeff'c'ent vsn in order to show its oscillationgb) DerivativesdC,(E)/dE vs
al_so shows a fine irregular structure as sho_wn in the inset of 4t the same energy.
Fig. 15. We have here also computed the jump autocorrela-
tion function and its derivative with respect to energy, astal velocities scale Iike\/<vX2>~\/<vy2>~\/E/m. Therefore,
shown in Fig. 16. One observe that the autocorrelation functhe average time of flight scales liké7)~ \/<vy2>/g
tion decays very fast although its derivative does not appear \/E/m¢?. The average Lyapunov exponent of the flow is
to decay. Therefore, we expect a similar irregular depenequal to the average Lyapunov exponent of the map divided
dence of the diffusion coefficient on energy as in the case oy the average time of flight, =\ ,55/( 7). Hence, we infer
the floor made of parabolic tiles. that the Lyapunov exponent decreases aggm/E) in the

Moreover, we have also studied the average Lyapunolimit E—c in agreement with the behavior observed in Fig.
exponent in the case of the sawtooth floor. Since the curvat?7.
ture of the floor is zero, the collisions are not defocusing Therefore, the local Lyapunov exponents of the parabolic
contrary to the case of parabolic tiles and we infer that thdloor is much larger than that of the sawtooth floor. Both
average Lyapunov exponent of the map does not depend gystems are chaotic and the islands are very small when they
energy. On the other hand, the average vertical and horizorgxist. However, the instabilities are very different as mea-

sured by the local Lyapunov exponents.

IX. SUMMARY AND CONCLUSION

In this paper, we have studied a class of chaotic billiards
consisting of a point particle moving in a constant vertical

1.2

o3 .
A at 3456 78 . 1

5L E | 038
0.6
0.4
02
0
0 15 0 % 30 3 02
04

E -0.6

InA

T - 0 05 1 15 2 25 3 35 4
FIG. 15. Diffusion coefficienD vs energyE for the case of the

sawtooth floor. The diffusion coefficient oscillates with the period ln E

AE=mg/2=7.5. Inset: Zoom on the beginning of the curve of the

diffusion coefficient, showing the irregularity of this curve on FIG. 17. Local Lyapunov exponeitvs energ)E in the case of
smaller scales. the sawtooth floor.
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field and bouncing on a periodically corrugated floor. Two
kinds of floors have been investigated: one made of parabolic
tiles and the other of triangular tiles.

In the case of parabolic tiles, we have shown that the
dynamics is chaotic but nonhyperbolic and that this chaos
induces a horizontal diffusive transport of the particle. This
diffusion is normal if the deterministic motion is perturbed
by a weak noise and the diffusion coefficient has an oscilla-
tory dependence on energy. The present result clearly show
that an oscillatory dependence of a transport coefficient on
the control parameters of a system is a common phenomeno
that should be expected not only in abstract mappings like
the standard mapping but also in mechanical systems such &
the present billiards. 000,04

In the absence of noise, the nonhyperbolicity of the dy-
namics generates a very rich structure, both in phase space K(S)AS;
in parameter space, as well as in the transport properties. WA ¢ .+ K (S) AS.
have here constructed by a method based on the loca
Lyapunov exponent a phase diagram in the parameter space
of our system showing the regions where elliptic islands FIG. 18. The infinitesimal change of the original orbit at the
should be expected in the phase space. These regions haveaddlision point causes the infinitesimal change at the following col-
complex structure reflecting the characteristic properties ofision.
the dynamics. The presence of the elliptic islands imply that
the time autocorrelation function of the jump from tile to tile preserved by weak noises. This result suggests that such an
does not decay to zero so that the diffusion is not normal fobscillatory dependence may manifest itself in the electric
such systems. However, in the apparent absence of ellipticonductance of such a semiconducting device.
island, the autocorrelation function is numerically observed
to decay very fast, which suggests the existence of an effec- ACKNOWLEDGMENTS
tive diffusion coefficient. This effective diffusion coefficient
has an irregular—but numerically reproducible—dependence The authors thank Professor G. Nicolis and Dr. B. Ko-
on energy. miyama for support and encouragement in this research, as

We have estimated analytically the diffusion in the case ofvell as Dr. R. Klages for fruitful discussions. T. H. is grateful
the infinitely small curvature of the billiard wall and on the to the Center for Nonlinear Phenomena and Complex Sys-
basis of an invariant subset of orbits in correspondence wittems for hospitality. P. G. thanks the National Fund for Sci-

a symbolic dynamics defined on an infinite alphabet of symentific ResearcliF.N.R.S. Belgium for financial support, as
bols. We have characterized this chaotic invariant subset iwell as the IAP Program of the Belgian Federal OSTC.
terms of its topological entropy and Hausdorff dimension.

In the case of the sawtooth floor, we have shown similar ~ APPENDIX: LINEAR STABILITY OF BOUNCING
but different properties. We attribute the differences to the PARTICLES

fact that the collisions on the walls of the triangular tiles are . .
not defocusing contrary to the collisions on parabolic tiles. Let us suppose that a particle of massnoves subject to

The phase diagram of the sawtooth floor shows the sam@ constant vertical acceleratigrand launches from the floor

structures as in the case of the parabolic-tiled floor. Howeveft the 0riginO(0,0) with the anglep, measured by the outer

the diffusion coefficient of the sawtooth floor does not oscil-0rmal of the floor as shown in Fig. 18. The horizontal and
late in the same well-pronounced manner as the paraboli¢ertical velocity of the particle at the origin arg anduv,,
tiled floor. On the other hand, the effective diffusion coeffi- FeSPectively. Then the orbit, of the particle is
cients has an irregular dependence on energy in both cases.

In the case that the particle is electrically charged and that __ 9 5 Vo
. ) o o= y= X+ —X. (A1)
its vertical acceleration is caused by an electric field, the 2u3 Ug
diffusion coefficient would be proportional to the electric
conductance. In this case, our billiard can find an experimen- We consider another orbi; of the particle of the same
tal realization in the form of semiconducting devices. Inenergy launching from the floor at the poi@dt (AXq,Ayg)
semiconducting devices, the thermal fluctuations as well amfinitesimally close to the origin with the angle+ A ¢. The
the impurities introduce some noise that modifies the detemorizontal and vertical velocity of this particle at the point
ministic motion. Accordingly, the fine dependence of the dif-Q’ are up andvy, respectively. Then we have
fusion coefficient on energy cannot be expected in such ex-

periments. AXo=Ssin(yo+ @g)ASy,
On the other hand, the present work shows that the oscil-
latory dependence of the diffusion coefficient on energy is Ayo=—cog yp+ @) ASp, (A2)
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where where &, is the derivative of the curve of the floor. This
approximation is enough for the evaluation of the shify;
Vo that is the distance between the intersections of the oflyits
U, @Yo, (A3 andT} with the floor.

From Egs.(A10) and (A11), we obtain

andAs; is the distance between the poidsandO’. Due to
the conservation of the energy, we obtain

T 1(AA+A+9A)
X=Xyt — —| — u —AX
1,1 ,1 1, 11fl_AluolOvozuo
> MUt 5 Mug=5mup+ Emv0+mgAy. (A4) L o
+ E—A — —Axot+Ayg|, (A12)
Neglecting the higher order terms of infinitesimal quantities v Uo
yields
and hence
UoAUO+U0AU():gCoi‘}/o‘F(po)ASO. (A5)
- ey 1+&2 1
The slope of the orbiT at the pointO’ is _ 14 9
, ASl gl—Al uO AlAU0+AUo+ ZUOAX
=0 —tarf yo— A g~ K(S0)AS,] (A6) e
— =tan yo—A@o— k(Sp)ASp], 1+ o
Uo PR ——OAXO+Ay0), (A13)
§1— A1 Uo

where k(sp) is the curvature of the floor at the origi@
measured by the outer normal. In the case of the parabolic . o .
tiles described by Eq6) in the text, the curvature is given WhereA, is the derivative of the orbil, at the point &.y),

explicitly as
-312
1 1 __ 9 0
K(S)ZF[].‘F r—z(X—|)} , (A?) A1 2USX+ uOI (A14)
where we supposed thecoordinate of the collision poirg The infinitesimal difference\ ¢, between the angles of
on the floor is contained in the regioh{1/2] +1/2). the reflections of the orbif§, and T} at the points X,y) and
From the leading order of the infinitesimal quantities of (x’ y’) is
Eqg. (A4), we obtain
Ap;=Aa’+ k(s))Asy, (A15)
UoAvo—1oAU= (UG +v§)[ ~ Ap— K(So)AS,]. (AB) ' v
From Egs.(A5) and(A8), we obtain whereA«’ is the infinitesimal angle between the lines tan-
) gent to the orbit¥, and T} as shown in Fig. 18. The deriva-
m ; , i T .
—zgcos(yo+<p0)+vo:<(so) o t!ve A; of the ort_)lt'_l'Q at_the point & /,y ) is given in the
(Auo) Po Aso) first order of the infinitesimal anglaa’ as
Ave) | m? Ago)
p—3005(70+90o)—U0K(50) ~Uo A=A+ (1+AHAa’. (A16)
(A9)

By neglecting the second order &k, the orbitTj can be ~ From Egs.(A12), (A15), and(A16), we obtain
written as

P 1{( 27+ 2
“ 1+AZ Ug YU

’
Ug Aup+ Av
X' = —Axg+Ayp. 0 0

Uog

U/

y'=— izx’2+ 24 %Axo
2u) Up U

(A10)

5 %(AXO—AX1)+ k(sp)As;. (Al7)
The floor can be approximated by the straight line in the 1+A7 up
vicinity of the pointC(x,y) of the collision,
By substituting Eqs(A2) and (A9) into Egs.(A13) and
y' =& (X' —Xx)+y, (A11) (A17), we obtain
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2T E

X1 Uo +E&[ X1 vg
As, A | uMT E{Altar(70+§00)+l} A, _U_O_E{Altar(70+¢o)+1}
A, - 2 1 1 1 vy
1+ A2 U_o( _2A1+ "’_tar(?’o"' ®0) 1+ A2 u—0+u—gtar(70+¢o)]
0
+ 1 9 . (A18)
1+A2 Ax1+x(sl)Asl

After some manipulation of the matrices, we finally obtain the linearized mapping of the generalized Birkhoff coordinate
(As,Aps) whereps=psine is the tangential momentum to the floor at the paint

1 cos 0
ASl W 0 ( My le) Po o n ASO ALQ
= (P ’
Aps, ' ' My My 0 ———— | | Aps, (A19)
0 P1COSey Po COS¢pq
where
1 K(So) ) m
My =— (M?g? 7%~ pg) + —{ > Po—sin(yo+ (PO)]COS (mgrsinyo—Po), (A20)
po po m-g
Po .
m12=ET(mgTS|n Yo~ Po), (A21)
2mig?’r  mPg(mPy’r —p3) [ K(S0) , m?g(m?g?7®— pj)
My = Po—siN(yo+ ¢o) +
PoPi Popi m’g COSeg Pops
Kk(S1) . 1 m°g?r K (Sp) .
X 21 pi—sin(y;+ey) + 3 (Mgrsinyo—Po)| — P5—Sinyo+ o)
m°g Cosp1 pgp? m°g
«] <G t 1 A22
ng —sin(y;+ 1) C0Sgg COSg; " (A22)
and
1 1] «(sy) mgr
mzz:_(m2 277 —pd)+ — _2{ pi—sin(y; + @1)] —Pa). (A23)
pl P1 p7
|
In the above, we denote the time between the collisions. by 1
One can see the mapping fromo(pso) to (sl,psl) is - cosy, 0
area preserving because the absolute value of the determinant Ri= g , (A24)
of the matrix (n;;) is one while the sign of this determinant ——C0Sy; siny; —COSYy;

depends on the orbiky. i

In the following, we will derive the formula of the
LyapunOV exponent Of the b|”|a.rd in a constant Vertical eX'Where Vi iS the ang'e between the Ve|ocity vector Of the
ternal field by using the linear stability matrices in Ed. particle and the horizontal axis, apd is the momentum of
(AL19). the particle.

The operatoR; defined by the transformation at the time At first, we consider the case of the free flight without
i (or the time of collision with the flogrfrom the perpen- collision. The infinitesimal change of the orbit varies the
dicular components of the position and velocity to the orbitposition and velocity from the original orbit in timeby free
to the respective vertical components is flight in a constant vertical field. We define the transforma-
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tion of the infinitesimal change of the vertical components ofwherey’ is defined as the angle between the orbit before the
the position and velocity of the particle by the free flight asith collision and the horizontal axis, i.e.,

Fi,
1 Yi=vit2¢i—m. (A28)
- 0
Fi=[ Pi+1C0SYi+1
0 Pi+1COSYit1 From Eqs.(A25) and(A27), we obtain the transformation
5o of the infinitesimal change of the vertical coordinate due to
1- m=g°7 l(p-2+p-2 —m2g2?) the infinitesimal change of the orbit of th#é collision and
p? 2m Tt EiAL successive free flight just before thie(1)th collision,
X
2m3927_ m2g27_2
TR =
PiPi+a Piva1
1
p; COSY; 0 | T 0
% 1 (A25) FIRCR "=| Pi+1C€0SY ,
p; COSY, 0 Pi COS’Yi +1
. . . meg’r® 7
Next we consider the effect of thigh collision on the 1-— 2—(pi2+ p?,,—m?g?7?)
infinitesimal change of the vertical components of the posi- Pi m
tion and velocity of the particle from the original orbit that X 2m3g?r mlg2 72
bounces on the floor with the angle measured from the - 1-—
outer normal vector of the floor. The curvatutgof the floor PiPit+1 Pit+1
plays a very important role of increasing the separation of 1 0
the nearby orbits although the motion of the particle could be
unstable even on the flat floor in the case of the presence of X 2ng Ki 1
a vertical external field. The infinitesimal change of the col- T T3 | g PiTSnei oo T
lision results in the transformatio; that operates the per- pi (Mg '
pen_d_lcular components of the position and velocity to the pi cosy! 0
orbit:
X 0 1 (A29)
-1 0 p; cosy{
C = 2m? Ki 1 ,
I - g —2'pi2—sinai SianDi K -
Pi | m’g @i (A26) In the case that the particle collides with the floor succes-

sively at the timet,,_; andt,, where fi—1) andn denote

the (n—1)th andnth collision respectively, from EqA29),
wherea; denotes the angle between the outer normal to thene can obtain the relation between the infinitesimal shift

floor and the horizontal line. Consequently, one can obtainsqg (t,) at timet,, and g, (t,_,) at timet,,_, of the perpen-
the transformation of the vertical coordinate by the infinitesi-gicular component of th position of the particle,

mal change of the collision,

1

5qu(tn) = 5qv(tn71+ Tnfl)

0
R,C;R 1= picosy, 2.2 2
mg=m,_1 Th—1
0 p; cosvy; =l 1- > >
pnfl
-1 0
2 2 22, 2
1t pPr—mMegT_
x| g e , |1 K Pt TP T Tt g n—1) ) aa (t y)-
N 3 2 Pi—Sina; COoS B Pn-1
pi Lm7g @i
(A30)
p; cosy| 0
X 1 : (A27) Yy i _ ,
0 — Here the quantityd,"’(n) is given by recursion according to
Pi COSY; the following continuous fraction,
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242, 2

1— m=g Th-1
2mg K i Pa1
Bl(;+)(n):—( 2” p2—sinay, | + 5 PRI -
Pn COS¢n | meg Pho1tPR—M 97,4 1

Th—1 2 - 2

2 2m2g2r, _ m’g®r,_
Pn % n 1_(1_—92 n-1 Bl()”(n—l)

pn—l pn—l

(A31)

Since the Lyapunov exponeitis the average rate of exponential separation between trajectories issued from arbitrarily
close initial conditions, one can finally obtain the form(dafor the Lyapunov exponents of the particle bouncing on the floor
in a constant vertical external field.
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